login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The sum of the lengths of all weighted lattice paths in L_n.
2

%I #35 Feb 13 2024 13:49:50

%S 0,1,3,11,33,96,278,787,2205,6133,16941,46554,127390,347331,944121,

%T 2559607,6923529,18690138,50364988,135506485,364063815,976880631,

%U 2618206923,7009868646,18749876418,50107633501,133800148323,357012426677,951936494055

%N The sum of the lengths of all weighted lattice paths in L_n.

%C L_n is the set of lattice paths of weight n that start at (0,0) and end on the horizontal axis and whose steps are of the following four kinds: a (1,0)-step with weight 1, a (1,0)-step with weight 2, a (1,1)-step with weight 2, and a (1,-1)-step with weight 1. The weight of a path is the sum of the weights of its steps.

%H G. C. Greubel, <a href="/A182879/b182879.txt">Table of n, a(n) for n = 0..1000</a>

%H Jean-Luc Baril, Nathanaël Hassler, Sergey Kirgizov, and José L. Ramírez, <a href="https://arxiv.org/abs/2402.04851">Grand zigzag knight's paths</a>, arXiv:2402.04851 [math.CO], 2024.

%H Miklós Bóna and Arnold Knopfmacher, <a href="http://dx.doi.org/10.1007/s00026-010-0060-7">On the probability that certain compositions have the same number of parts</a>, Ann. Comb., 14 (2010), 291-306.

%H Emanuele Munarini and Norma Zagaglia Salvi, <a href="http://dx.doi.org/10.1016/S0012-365X(02)00378-3">On the Rank Polynomial of the Lattice of Order Ideals of Fences and Crowns</a>, Discrete Mathematics 259 (2002), 163-177.

%F a(n) = Sum_{k=0..n} k*binomial(k,n-k)^2.

%F G.f.: z*(1+2*z^2-z^3)/((1-3*z+z^2)*(1+z+z^2))^(3/2).

%F a(n) ~ sqrt(20 + 9*sqrt(5)) * ((3 + sqrt(5))/2)^n * sqrt(n) / (10*sqrt(Pi)). - _Vaclav Kotesovec_, Mar 06 2016

%F Conjecture: (n-1)*(310*n-781)*a(n) + (-882*n^2+3845*n-3679)*a(n-1) + (214*n^2-2903*n+3751)*a(n-2) + (-358*n^2-459*n+1955)*a(n-3) + (834*n^2-3631*n+4065)*a(n-4) - (262*n-663)*(n-3)*a(n-5) = 0. - _R. J. Mathar_, Jun 14 2016

%F Recurrence (of order 4): (n-1)*(2*n-5)*(2*n^2 - 15*n + 24)*a(n) = 2*(n-3)*(4*n^3 - 30*n^2 + 52*n - 13)*a(n-1) + (4*n^4 - 40*n^3 + 133*n^2 - 201*n + 96)*a(n-2) + 2*(4*n^4 - 38*n^3 + 110*n^2 - 126*n + 51)*a(n-3) - (n-2)*(2*n-3)*(2*n^2 - 11*n + 11)*a(n-4). - _Vaclav Kotesovec_, Sep 23 2017

%F a(n) ~ phi^(2*n + 3) * sqrt(n) / (2 * 5^(3/4) * sqrt(Pi)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - _Vaclav Kotesovec_, Sep 23 2017

%e a(3)=11. Indeed, denoting by h (H) the (1,0)-step of weight 1 (2), and u=(1,1), d=(1,-1), there are five paths of weight 3: hhh, hH, Hh, ud, and du; their lengths are 3, 2, 2, 2,and 2, respectively.

%p a:=n->sum(k*binomial(k,n-k)^2,k=0..n): seq(a(n),n=0..28);

%t CoefficientList[Series[x*(1+2*x^2-x^3)/((1-3*x+x^2)*(1+x+x^2))^(3/2), {x, 0, 20}], x] (* _Vaclav Kotesovec_, Mar 06 2016 *)

%o (PARI) z='z+O('z^50); concat([0], Vec(z*(1+2*z^2-z^3)/((1-3*z+z^2)*(1+z+z^2))^(3/2))) \\ _G. C. Greubel_, Mar 25 2017

%Y Cf. A182878.

%K nonn

%O 0,3

%A _Emeric Deutsch_, Dec 11 2010