Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #40 Mar 16 2024 11:19:25
%S 1,1,5,21,153,1209,12285,140589,1871217,27773361,460041525,8363802501,
%T 166064229513,3570030632169,82674532955565,2051044762727709,
%U 54279654050034657,1526205561241263201,45438086217150617445,1427921718081647393781,47235337785416646609273
%N E.g.f. 1/(cos(sqrt(3)*x) - sin(sqrt(3)*x)/sqrt(3)).
%C First column of A182824. Hankel transform is 4^C(n+1,2)*(A000178(n))^2.
%C Moments of orthogonal polynomials whose coefficient array is A182826.
%H Vincenzo Librandi, <a href="/A182825/b182825.txt">Table of n, a(n) for n = 0..200</a>
%H Shi-Mei Ma, Jun Ma, Yeong-Nan Yeh, <a href="https://arxiv.org/abs/1802.02861">On certain combinatorial expansions of descent polynomials and the change of grammars</a>, arXiv:1802.02861 [math.CO], 2018.
%F From _Peter Bala_, Jan 21 2011: (Start)
%F By comparing the e.g.f. for this sequence with the e.g.f for the type B Eulerian numbers A060187 we can show that
%F (1)... a(n) = B(n,w)/(1+w)^(n+1), where w = exp(2*Pi*I/3) and {B(n,x)}n>=1 = [x,x+x^2,x+6*x^2+x^3,x+23*x^2+23*x^3+x^4,...] are the type B Eulerian polynomials.
%F Equivalently,
%F (2)... a(n) = (-I*sqrt(3))^n*Sum_{k = 0..n} 2^k*k!*A039755(n,k)*(-1/2+sqrt(3)*I/6)^k,
%F where A039755(n,k) are the type B analogs of the Stirling numbers of the second kind. We can rewrite this as
%F (3)... a(n) = (-I*sqrt(3))^n*sum {k = 0..n} (-1/2+sqrt(3)*I/6)^k * Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*(2*j+1)^n.
%F This explicit formula for a(n) may be used to obtain various congruence results. For example,
%F (4a)... a(p) = 1 (mod p) for prime p = 6*n+1,
%F (4b)... a(p) = -1 (mod p) for prime p = 6*n+5.
%F For similar results see A000111. Let u = exp(2*Pi*I/6) = 1/2+sqrt(3)/2*I be a primitive sixth root of unity.
%F (5)... a(n) = Sum_{k = 0..n+1} u^(n+2-2*k)*Sum_{j = 1..n+1} (-1)^(k-j)*binomial(n+1,k-j)*(2*j-1)^n. Cf. A002439. (End)
%F G.f.: 1/Q(0), where Q(k) = 1 - x*(2*k+1) - x^2*(2*k+2)^2/Q(k+1) ; (continued fraction). - _Sergei N. Gladkovskii_, Sep 27 2013
%F E.g.f.: 1/E(0), where E(k) = 1 - x/( 2*k+1 - 3*x*(2*k+1)/(3*x + 2*(k+1)/E(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Sep 28 2013
%F G.f.: T(0)/(1-x), where T(k) = 1 - 4*x^2*(k+1)^2/(4*x^2*(k+1)^2 - (1 -x -2*x*k)*(1 -3*x -2*x*k)/T(k+1) ); (continued fraction). - _Sergei N. Gladkovskii_, Nov 10 2013
%t nn = 20; Table[n!, {n, 0, nn}] CoefficientList[Series[1/(Cos[Sqrt[3]*x] - Sin[Sqrt[3]*x]/Sqrt[3]), {x, 0, nn}], x] (* _T. D. Noe_, Jun 28 2011 *)
%K nonn
%O 0,3
%A _Paul Barry_, Dec 05 2010