login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Beatty sequence for (4 + sqrt(2))/2.
5

%I #21 Sep 08 2022 08:45:55

%S 2,5,8,10,13,16,18,21,24,27,29,32,35,37,40,43,46,48,51,54,56,59,62,64,

%T 67,70,73,75,78,81,83,86,89,92,94,97,100,102,105,108,110,113,116,119,

%U 121,124,127,129,132,135,138,140,143,146,148,151,154,157,159,162,165,167,170,173,175

%N Beatty sequence for (4 + sqrt(2))/2.

%C Let u=1+sqrt(2) and v=sqrt(2). Jointly rank {j*u} and {k*v} as in the first comment at A182760; a(n) is the position of n*u.

%C Is this a shifted version of A126281? - _R. J. Mathar_, Jan 24 2011

%C The answer to _R. J. Mathar_'s question is no: A126281 contains 65 while this sequence does not. - _L. Edson Jeffery_, Sep 02 2014

%H G. C. Greubel, <a href="/A182769/b182769.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = floor(n*(4 + sqrt(2))/2).

%t Table[Floor[n*(4 + Sqrt[2])/2], {n, 1, 100}] (* _G. C. Greubel_, Jan 27 2018 *)

%o (PARI) a(n) = floor(n*(4+sqrt(2))/2); \\ _Michel Marcus_, Sep 02 2014

%o (Magma) [Floor(n*(4 + Sqrt(2))/2): n in [1..50]]; // _G. C. Greubel_, Jan 27 2018

%Y Cf. A182760, A182770.

%K nonn

%O 1,1

%A _Clark Kimberling_, Nov 30 2010