Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #10 Apr 04 2019 03:00:06
%S 0,0,0,4096,0,531441,0,0,244140625,0,13841287201,0,3138428376721,
%T 23298085122481,582622237229761,2213314919066161,21914624432020321,
%U 787662783788549761,6582952005840035281,39959630797262576401
%N a(n) = the largest n-digit number with exactly 13 divisors, a(n) = 0 if no such number exists.
%C a(n) = the largest n-digit number of the form p^12 (p = prime), a(n) = 0 if no such number exists.
%H Robert Israel, <a href="/A182686/b182686.txt">Table of n, a(n) for n = 1..999</a>
%F A000005(a(n)) = 13.
%F a(n) = A182685(n) for n <= 17.
%p f:= proc(n) local r;
%p r:= prevprime(ceil(10^(n/12)))^12;
%p if r < 10^(n-1) then 0 else r fi;
%p end proc:
%p f(1):= 0: f(2):= 0: f(3):=0:
%p map(f, [$1..30]); # _Robert Israel_, Apr 03 2019
%o (PARI) a(n) = my(r=precprime(ceil(10^(n/12))-1)^12); if(r < 10^(n-1), return(0)); r \\ Adapted from Robert Israel's Maple program; _Felix Fröhlich_, Apr 03 2019
%Y Cf. A030631, A182685.
%K nonn,base
%O 1,4
%A _Jaroslav Krizek_, Nov 27 2010