login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Floor-sum sequence of r with r = golden ratio = (1+sqrt(5))/2 and a(1)=1, a(2)=2.
6

%I #17 Apr 25 2019 03:19:18

%S 1,2,4,8,9,14,16,17,19,21,24,25,27,29,30,32,33,35,37,38,40,42,43,45,

%T 46,48,50,51,53,55,56,58,59,61,63,64,66,67,69,71,72,74,76,77,79,80,82,

%U 84,85,87,88,90,92,93,95,97,98,100,101,103,105

%N Floor-sum sequence of r with r = golden ratio = (1+sqrt(5))/2 and a(1)=1, a(2)=2.

%C Let S be the set generated by these rules:

%C (1) if m and n are in S and m<n, then floor(mr+nr) is in S;

%C (2) one or more specific numbers are in S by decree.

%C The floor-sum sequence determined by (1) and (2) results by arranging the elements of S in strictly increasing order.

%H Iain Fox, <a href="/A182653/b182653.txt">Table of n, a(n) for n = 1..3000</a>

%e Viewing the floor-sum as a binary operation o, we create S in successive generations:

%e 1, 2 (0th generation);

%e 1o2=4 (1st generation);

%e 1o4=8, 2o4=9 (2nd generation);

%e 1o8=14, 2o8=16, 4o8=19 and four others (3rd generation).

%p A182653 := proc(amax)

%p a := {1,2} ;r := (1+sqrt(5))/2 ;

%p while true do

%p anew := {} ;

%p for i in a do

%p for j in a do

%p if i <> j then

%p S := floor(r*(i+j)) ;

%p if is(S <= amax) then

%p anew := anew union { S };

%p end if;

%p end if;

%p end do:

%p end do:

%p if a union anew = a then

%p return sort(a) ;

%p end if;

%p a := a union anew ;

%p end do:

%p end proc:

%p A182653(106) ;

%o (PARI) lista(nn) = my(S=[1, 2], r=(1+sqrt(5))/2, new, k); while(1, new=[]; for(m=1, #S, for(n=m+1, #S, k=floor(r*(S[m]+S[n])); if(k<=nn, new=setunion(new,[k])))); if(S==setunion(S,new), return(S)); S=setunion(S,new)) \\ _Iain Fox_, Apr 24 2019

%Y Cf. A182654, A182655, A182656.

%K nonn

%O 1,2

%A _Clark Kimberling_, Nov 26 2010