login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182590
Number of distinct prime factors of 2^n - 1 of the form k*n + 1.
13
1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 2, 2, 2, 1, 2, 1, 1, 2, 3, 2, 1, 2, 2, 1, 2, 3, 3, 1, 2, 1, 2, 2, 3, 2, 2, 3, 2, 2, 4, 3, 3, 2, 3, 3, 3, 1, 4, 4, 3, 3, 2, 3, 2, 3, 5, 2, 2, 1, 2, 3, 4, 2, 3, 2, 3, 1, 4, 3, 3, 3, 4, 5, 3, 1, 5, 3, 2, 3, 4, 2, 3, 2, 4, 3
OFFSET
2,9
COMMENTS
From Thomas Ordowski, Sep 08 2017: (Start)
By Bang's theorem, a(n) > 0 for all n > 1, see A186522.
Primes p such that a(p) = 1 are the Mersenne exponents A000043.
Composite numbers m for which a(m) = 1 are A292079.
a(n) >= A086251(n), where equality is for all prime numbers and for some composite numbers (among others for all odd prime powers p^k with k > 1).
Theorem: if n is prime, then a(n) = A046800(n).
Conjecture: if a(n) = A046800(n), then n is prime.
Problem: is a(n) < A046800(n) for every composite n? (End)
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 2..1200 (terms 2..200 from Seppo Mustonen, terms 201..786 from Michel Marcus)
Seppo Mustonen, On prime factors of numbers m^n+-1 [Local copy]
EXAMPLE
For n=10 the prime factors of 2^n - 1 = 1023 are 3, 11 and 31, and 11 = n+1, 31 = 3n+1. Thus a(10)=2.
MATHEMATICA
m = 2; n = 2; nmax = 200;
While[n <= nmax, {l = FactorInteger[m^n - 1]; s = 0;
For[i = 1, i <= Length[l],
i++, {p = l[[i, 1]];
If[IntegerQ[(p - 1)/n] == True, s = s + l[[i, 2]]]; }];
a[n] = s; } n++; ];
Table[a[n], {n, 2, nmax}]
PROG
(PARI) a(n) = my(f = factor(2^n-1)); sum(k=1, #f~, ((f[k, 1]-1) % n)==0); \\ Michel Marcus, Sep 10 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Seppo Mustonen, Nov 22 2010
EXTENSIONS
Name edited by Thomas Ordowski, Sep 19 2017
STATUS
approved