login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways to place k non-attacking semi-knights on an n x n chessboard, sum over all k>=0
2

%I #9 Sep 12 2015 11:00:24

%S 2,16,288,11664,1458000,506250000,414720000000,869730877440000,

%T 5045702916833280000,77297454895962562560000,

%U 3017525202366485003182080000,307389127582207654481154908160000,83016370640108703579427655610531840000,58770343311359208383258439665073059266560000

%N Number of ways to place k non-attacking semi-knights on an n x n chessboard, sum over all k>=0

%C Semi-knight is a semi-leaper [1,2]. Moves of a semi-knight are allowed only in [2,1] and [-2,-1]. See also semi-bishops (A187235).

%H Vaclav Kotesovec, <a href="/A182562/b182562.txt">Table of n, a(n) for n = 1..60</a>

%H V. Kotesovec, <a href="https://oeis.org/wiki/User:Vaclav_Kotesovec">Non-attacking chess pieces</a>

%F a(n) = F(n/2+2)^(n+2)*prod(j=1,n/2-1,F(j+2)^4) if n is even, F((n+1)/2+2)^((n+1)/2)*F((n-1)/2+2)^((n-1)/2)*prod(j=1,(n-1)/2,F(j+2)^4) if n is odd, where F(n) = A000045(n) is the n-th Fibonacci number.

%F a(n) is asymptotic to C^4*((1+sqrt(5))/2)^((n+2)*(n+4))/5^(3/2*(n+2)), where C=1.226742010720353244... is Fibonacci Factorial Constant, see A062073.

%t Table[If[EvenQ[n],Fibonacci[n/2+2]^(n+2)*Product[Fibonacci[j+2]^4,{j,1,n/2-1}],Fibonacci[(n+1)/2+2]^((n+1)/2)*Fibonacci[(n-1)/2+2]^((n-1)/2)*Product[Fibonacci[j+2]^4,{j,1,(n-1)/2}]],{n,1,20}]

%Y Cf. A067962, A067966, A063443, A006506, A067965, A066864, A067963, A067964, A182563

%K nonn

%O 1,1

%A _Vaclav Kotesovec_, May 05 2012