Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Apr 23 2018 14:22:01
%S 1,1,3,72,11423,11187798,65460885384,2247082682913972,
%T 447548280314975144427,513427482871084962707467332
%N Chromatic invariant of the square grid graph G_(n,n).
%C The square grid graph G_(n,n) has n^2 = A000290(n) vertices and 2*n*(n-1) = A046092(n-1) edges. The chromatic invariant equals the absolute value of the first derivative of the chromatic polynomial evaluated at 1.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/ChromaticInvariant.html">Chromatic Invariant</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Chromatic_polynomial">Chromatic Polynomial</a>
%F a(n) = |(d/dq P(n,q))_{q=1}| with P(n,q) = Sum_{k=0..n^2} A182368(n,k) * q^(n^2-k).
%t Abs[Table[Derivative[1][ChromaticPolynomial[GridGraph[{n, n}]]][1], {n, 7}]] (* _Eric W. Weisstein_, May 01 2017 *)
%Y Cf. A000290, A046092, A182368 (chromatic polynomial).
%K nonn,more
%O 1,3
%A _Alois P. Heinz_, May 03 2012
%E a(10) from _Andrew Howroyd_, Apr 23 2018