login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Carmichael numbers of the form C = 23*67*(66n+23).
1

%I #19 Jul 05 2017 10:04:29

%S 340561,9494101,499310197,717164449,1330655041,1831048561,2586927553,

%T 2806205689,3088134721,3284630713,5394826801,5447713921,6150705793,

%U 7349616121,10501586767,11453249809,12820178449,13714377601,13968642601,15818878153,23196631393,23392517149,26242929505

%N Carmichael numbers of the form C = 23*67*(66n+23).

%C We get Carmichael numbers for n = 3, 93, 4909, 7051, 13083, 18003, 25435, 27591, 30363, 32295, 53043, 53563, 60475, 72263, 103254, 112611, 126051, 134843, 137343, 155535, 228075, 230001, 258027.

%C Conjecture: Any Carmichael number C divisible by 23 and 67 can be written as C = 23*67*(66n+23).

%C Checked for the first 23 Carmichael numbers divisible by 23 and 67.

%C Note: the possibility to can be written as C = a*b*(n*(b-1) +a), where a and b prime divisors of C, is a property of only some of Carmichael numbers, thus is not derived from Korselt's criterion (for instance, for the Carmichael number 29341 = 13*37*61, we have 61 mod 36 = 25). In fact, seems to be rather a property of some pairs of primes (other pair of primes which generates Carmichael numbers of this form is 41 and 241).

%C The conjecture follows from Korselt's criterion: 67 | a(n) so a(n) = 1 (mod 66). - _Charles R Greathouse IV_, Oct 02 2012

%H Charles R Greathouse IV, <a href="/A182515/b182515.txt">Table of n, a(n) for n = 1..10000</a>

%H E. W. Weisstein, <a href="http://mathworld.wolfram.com/CarmichaelNumber.html">Carmichael Number</a>

%o (PARI) Korselt(n)=my(f=factor(n)); for(i=1, #f[, 1], if(f[i, 2]>1||(n-1)%(f[i, 1]-1), return(0))); 1

%o list(lim)=my(v=List()); forstep(n=340561, lim, 101706, if(Korselt(n), listput(v, n))); Vec(v) \\ _Charles R Greathouse IV_, Jul 05 2017

%K nonn

%O 1,1

%A _Marius Coman_, May 03 2012