Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Mar 12 2022 13:13:02
%S 1,1,1,2,5,12,30,80,221,624,1798,5271,15662,47052,142686,436187,
%T 1342669,4158048,12945758,40497415,127225426,401222453,1269712425,
%U 4030877287,12833659158,40968993548,131106215470,420507819784,1351562339222,4352564765053,14042486582525
%N G.f. satisfies: A(x) = 1 + x*A(x) * A( x^2*A(x)^2 ).
%F G.f. satisfies: A( x/(1 + x*A(x^2)) ) = 1 + x*A(x^2).
%e G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 5*x^4 + 12*x^5 + 30*x^6 + 80*x^7 +...
%e Related expansions.
%e 1/(1+x*A(x^2)) = 1 - x + x^2 - 2*x^3 + 3*x^4 - 5*x^5 + 8*x^6 - 14*x^7 +...
%e compare to the series reversion of x*A(x), which begins:
%e x - x^2 + x^3 - 2*x^4 + 3*x^5 - 5*x^6 + 8*x^7 - 14*x^8 + 23*x^9 +...
%o (PARI) {a(n)=local(A=1+x);for(i=1,n,A=1/x*serreverse(x/(1+x*subst(A,x,x^2 +x*O(x^n)))));polcoeff(A,n)}
%o for(n=0,31,print1(a(n),", "))
%K nonn
%O 0,4
%A _Paul D. Hanna_, May 02 2012