login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182474
Primes of the form p^q - q, where p and q are primes.
1
2, 5, 7, 23, 47, 167, 359, 839, 1367, 1847, 2207, 3719, 5039, 7919, 8179, 10607, 11447, 16127, 17159, 19319, 29927, 36479, 44519, 49727, 54287, 57119, 66047, 85847, 97967, 113567, 128879, 177239, 196247, 201599, 218087, 241079, 273527, 292679, 323759, 344567
OFFSET
1,1
FORMULA
Union of A049002 and A057678.
EXAMPLE
8179 = 2^13 - 13
MATHEMATICA
nn = 600000; mx = Floor[Log[2, nn]]; t2 = Select[Table[2^n - n, {n, Prime[Range[PrimePi[mx]]]}], PrimeQ]; mx = Floor[Sqrt[nn]]; tp = Select[Table[n^2 - 2, {n, Prime[Range[PrimePi[mx]]]}], PrimeQ]; Union[t2, tp] (* T. D. Noe, May 01 2012 *)
Module[{upto=350000, r}, r=Floor[Sqrt[upto+2]]; Select[Union[Select[ (#1[[1]]^#1[[2]]-#1[[2]]&)/@Tuples[Prime[Range[r]], 2], PrimeQ]], #1<=upto&]] (* Harvey P. Dale, Dec 07 2012 *)
CROSSREFS
Cf. A049002 (primes of the form p^2 - 2).
Cf. A057678 (primes of the form 2^p - p).
Sequence in context: A243595 A103807 A099228 * A106018 A188499 A215535
KEYWORD
nonn,easy
AUTHOR
Alex Ratushnyak, May 01 2012
STATUS
approved