|
|
|
|
0, 8, 10, 24, 28, 34, 46, 52, 58, 66, 78, 80, 94, 96, 126, 134, 162, 166, 180, 208, 240, 258, 270
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Theorem. If in the intervals {(A194598(n), A164368(n))} with lengths a(n)-1 the number of primes is unbounded, then there exist arbitrarily long sequences of consecutive primes p_k, p_(k+1),...,p_m such that every interval (p_i/2, p_(i+1)/2), i=k,k+1,...,m-1, contains a prime.
|
|
LINKS
|
Table of n, a(n) for n=1..23.
V. Shevelev, Ramanujan and Labos primes, their generalizations, and classifications of primes, J. Integer Seq. 15 (2012) Article 12.5.4.
|
|
CROSSREFS
|
Cf. A164368, A194598, A182366, A182426.
Sequence in context: A303199 A097543 A088034 * A182366 A347194 A271313
Adjacent sequences: A182402 A182403 A182404 * A182406 A182407 A182408
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Vladimir Shevelev, Apr 27 2012
|
|
STATUS
|
approved
|
|
|
|