Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #41 Oct 06 2017 01:03:44
%S 1,0,1,-1,1,-1,1,-1,1,-1,1,-1,1,0,1,-1,1,-1,1,-1,0,-1,1,-1,1,0,1,-1,1,
%T -1,1,-1,0,0,1,-1,1,0,1,-1,1,-1,1,0,-1,-1,1,-1,1,-1,1,-1,1,-1,1,-1,0,
%U -1,1,-1,1,1,1,-1,1,-1,1,-1,1,-1,1,-1,1,1,0,-1,1
%N Signs of differences of number of divisors function: a(n) = sign(d(n)-d(n-1)), cf. A000005.
%C d(n) (A000005) has offset 1, being an arithmetic function, so this sequence has offset 2.
%C Erdős proves that a(n) = 1 with natural density 1/2 and a(n) = -1 with natural density 1/2. Heath-Brown proved that a(n) = 0 infinitely often; see A005237 for details. - _Charles R Greathouse IV_, Oct 20 2013
%H N. J. A. Sloane, <a href="/A182394/b182394.txt">Table of n, a(n) for n = 2..20000</a>
%H P. Erdős, <a href="http://www.renyi.hu/~p_erdos/1936-03.pdf">On a problem of Chowla and some related problems</a>, Proc. Cambridge Philos. Soc. 32 (1936), pp. 530-540.
%H D. R. Heath-Brown, <a href="http://dx.doi.org/10.1112/S0025579300010743">The divisor function at consecutive integers</a>, Mathematika 31 (1984), pp. 141-149.
%F a(n) = 1 if d(n) > d(n - 1) and a(n) = -1 if d(n) < d(n - 1), otherwise a(n) = 0 if d(n) = d(n - 1), where d(n) is the number of divisors of n (A000005).
%e The initial values d(1) ... d(20) are
%e 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6, 2, 4, 4, 5, 2, 6, 2, 6, ...
%e and the first differences are
%e 1, 0, 1, -1, 2, -2, 2, -1, 1, -2, 4, -4, 2, 0, 1, -3, 4, -4, 4, ...,
%e the signs of which are +1, 0, +1, -1, ...
%t Sign[Differences[DivisorSigma[0, Range[2..100]]]] (* _T. D. Noe_, Apr 27 2012, amended by _N. J. A. Sloane_, Oct 05 2017 *)
%o (PARI) a(n)=sign(numdiv(n)-numdiv(n-1)) \\ _Charles R Greathouse IV_, Oct 20 2013
%Y Cf. A000005, A051950, A175150 (accumulated sums).
%K sign,easy
%O 2
%A _Giovanni Teofilatto_, Apr 27 2012
%E Edited by _N. J. A. Sloane_, Oct 05 2017