login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

List of positive integers whose prime tower factorization, as defined in comments, contains the prime 7.
1

%I #28 Apr 11 2020 06:40:14

%S 7,14,21,28,35,42,49,56,63,70,77,84,91,98,105,112,119,126,128,133,140,

%T 147,154,161,168,175,182,189,196,203,210,217,224,231,238,245,252,259,

%U 266,273,280,287,294,301,308,315,322,329,336,343,350,357,364,371,378

%N List of positive integers whose prime tower factorization, as defined in comments, contains the prime 7.

%C The prime tower factorization of a number can be recursively defined as follows:

%C (0) The prime tower factorization of 1 is itself

%C (1) To find the prime tower factorization of an integer n>1, let n = p1^e1 * p2^e2 * ... * pk^ek be the usual prime factorization of n. Then the prime tower factorization is given by p1^(f1) * p2^(f2) * ... * pk^(fk), where fi is the prime tower factorization of ei.

%C Observation: the union of 128 and the first 54 nonzero multiples of 7 (cf. A008589) gives the first 55 terms of this sequence. - _Omar E. Pol_, Feb 01 2020

%H Amiram Eldar, <a href="/A182341/b182341.txt">Table of n, a(n) for n = 1..10000</a>

%H Patrick Devlin and Edinah Gnang, <a href="http://arxiv.org/abs/1204.5251">Primes Appearing in Prime Tower Factorization</a>, arXiv:1204.5251 [math.NT], 2012-2014.

%p # The integer n is in this sequence if and only if

%p # containsPrimeInTower(7, n) returns true

%p containsPrimeInTower:=proc(q, n) local i, L, currentExponent; option remember;

%p if n <= 1 then return false: end if;

%p if type(n/q, integer) then return true: end if;

%p L := ifactors(n)[2];

%p for i to nops(L) do currentExponent := L[i][2];

%p if containsPrimeInTower(q, currentExponent) then return true: end if

%p end do;

%p return false:

%p end proc:

%t containsPrimeInTower[q_, n_] := containsPrimeInTower[q, n] = Module[{i, L, currentExponent}, If[n <= 1, Return[False]]; If[IntegerQ[n/q], Return[True]]; L = FactorInteger[n]; For[i = 1, i <= Length[L] , i++, currentExponent = L[[i, 2]]; If[containsPrimeInTower[q, currentExponent], Return[True]]]; Return[False]];

%t Select[Range[400], containsPrimeInTower[7, #]&] (* _Jean-François Alcover_, Jan 22 2019, from Maple *)

%Y Cf. A008589, A182318.

%K nonn

%O 1,1

%A _Patrick Devlin_, Apr 25 2012