Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #22 Dec 15 2024 04:36:34
%S 0,0,0,0,0,0,5985,13112470,8535294180,3096620034795,800118566011380,
%T 166591475854153740,30012638793107746776,4892304538906805158775,
%U 743352352817243899253160,107478174967432322995403280,15008321493306766503800761840,2046331888629918743459557040544
%N Number of connected labeled graphs with n nodes and n+10 edges.
%H Andrew Howroyd, <a href="/A182295/b182295.txt">Table of n, a(n) for n = 1..100</a>
%H Steven R. Finch, <a href="https://arxiv.org/abs/2408.12440">An exceptional convolutional recurrence</a>, arXiv:2408.12440 [math.CO], 22 Aug 2024.
%H S. Janson, D. E. Knuth, T. Luczak and B. Pittel, <a href="http://dx.doi.org/10.1002/rsa.3240040303">The Birth of the Giant Component</a>, Random Structures and Algorithms Vol. 4 (1993), 233-358.
%p N:=20: [seq(coeff(op(i,[seq(coeff(taylor(log(add(x^i*(1+y)^(binomial(i,2))/i!,i=0..N)),x=0,N+1),x,i)*i!,i=1..N)]),y,i-1+11),i=1..N)];
%Y A diagonal of A343088.
%Y Cf. A057500.
%K nonn
%O 1,7
%A _Michael Burkhart_, Apr 23 2012
%E Offset corrected and terms a(16) and beyond from _Andrew Howroyd_, Apr 16 2021