login
Number of connected labeled graphs with n nodes and n+10 edges.
2

%I #22 Dec 15 2024 04:36:34

%S 0,0,0,0,0,0,5985,13112470,8535294180,3096620034795,800118566011380,

%T 166591475854153740,30012638793107746776,4892304538906805158775,

%U 743352352817243899253160,107478174967432322995403280,15008321493306766503800761840,2046331888629918743459557040544

%N Number of connected labeled graphs with n nodes and n+10 edges.

%H Andrew Howroyd, <a href="/A182295/b182295.txt">Table of n, a(n) for n = 1..100</a>

%H Steven R. Finch, <a href="https://arxiv.org/abs/2408.12440">An exceptional convolutional recurrence</a>, arXiv:2408.12440 [math.CO], 22 Aug 2024.

%H S. Janson, D. E. Knuth, T. Luczak and B. Pittel, <a href="http://dx.doi.org/10.1002/rsa.3240040303">The Birth of the Giant Component</a>, Random Structures and Algorithms Vol. 4 (1993), 233-358.

%p N:=20: [seq(coeff(op(i,[seq(coeff(taylor(log(add(x^i*(1+y)^(binomial(i,2))/i!,i=0..N)),x=0,N+1),x,i)*i!,i=1..N)]),y,i-1+11),i=1..N)];

%Y A diagonal of A343088.

%Y Cf. A057500.

%K nonn

%O 1,7

%A _Michael Burkhart_, Apr 23 2012

%E Offset corrected and terms a(16) and beyond from _Andrew Howroyd_, Apr 16 2021