Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Nov 05 2020 19:22:33
%S 3,5,5,5,17,7,17,7,7,7,59,19,17,13,7,19,137,13,19,7,23,97,19,89,17,
%T 223,29,109,5,19,5,59,197,5,17,307,59,83,109,157,19,23,43,109,103,7,
%U 23,19,7,269,43,13,5,67,89,83,479,53,53,383,7,83,113,37,5,23
%N Least prime p that 6^n - p is prime.
%H Robert Israel, <a href="/A182262/b182262.txt">Table of n, a(n) for n = 1..2035</a>
%e For n=3 p=5 is the least prime that 6^3-p is prime (211).
%p f:= proc(n) local t,p;
%p t:= 6^n;
%p p:= 2;
%p do
%p p:= nextprime(p);
%p until isprime(t-p);
%p p
%p end proc:
%p map(f, [$1..100]); # _Robert Israel_, Nov 05 2020
%t f[n_] := Block[{p = 2}, While[! PrimeQ[6^n - p], p = NextPrime[p]];
%t p]; Array[f, 60]
%o (PARI) a(n) = my(p = 2); while(!isprime(6^n-p), p = nextprime(p+1)); p; \\ _Michel Marcus_, Mar 23 2016
%Y Cf. A013607, A059614 (n such that a(n)=5).
%K nonn
%O 1,1
%A _Mateusz Szymański_, Apr 21 2012