login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A182185
G.f.: exp( Sum_{n>=1} 3^b(n) * x^n/n ) where b(n) = highest exponent of 3 in 2^n+1.
2
1, 3, 5, 9, 15, 21, 29, 39, 49, 63, 81, 99, 123, 153, 183, 219, 261, 303, 353, 411, 469, 537, 615, 693, 781, 879, 977, 1089, 1215, 1341, 1485, 1647, 1809, 1989, 2187, 2385, 2607, 2853, 3099, 3375, 3681, 3987, 4323, 4689, 5055, 5457, 5895, 6333, 6813, 7335, 7857, 8421
OFFSET
0,2
FORMULA
G.f. satisfies: A(x) = (1-x^2)*(1-x^3)/(1-x)^3 * A(x^3).
Define TRISECTIONS: A(x) = T_0(x^3) + x*T_1(x^3) + x^2*T_2(x^3), then:
(1) T_1(x)/T_0(x) = 3*(1+x)/(1+5*x),
(2) T_2(x)/T_0(x) = (5+x)/(1+5*x),
(3) T_0(x)/T_0(x^3) = (1+x)*(1+5*x)*(1-x^3)^2 / ((1-x)^3*(1+5*x^3)),
(4) T_1(x)/T_1(x^3) = (1+x)^2*(1-x^3)^2 / ((1-x)^3*(1+x^3)),
(5) T_2(x)/T_2(x^3) = (1+x)*(5+x)*(1-x^3)^2 / ((1-x)^3*(5+x^3)),
(6) A(x) = (1-x)/(1+5*x)*T_0(x) = (1-x)/(1+x)*T_1(x)/3 = (1-x)/(5+x)*T_2(x).
EXAMPLE
G.f.: A(x) = 1 + 3*x + 5*x^2 + 9*x^3 + 15*x^4 + 21*x^5 + 29*x^6 + 39*x^7 +...
The g.f. satisfies:
A(x)/A(x^3) = 1 + 3*x + 5*x^2 + 6*x^3 + 6*x^4 + 6*x^5 +...+ 6*x^n +...
The logarithm of the g.f. begins:
log(A(x)) = 3*x + x^2/2 + 9*x^3/3 + x^4/4 + 3*x^5/5 + x^6/6 + 3*x^7/7 + x^8/8 + 27*x^9/9 + x^10/10 + 3*x^11/11 + x^12/12 +...+ 3^b(n)*x^n/n +...
where b(n) = highest exponent of 3 in 2^n+1, for n>=1, and begins:
b = [1,0,2,0,1,0,1,0,3,0,1,0,1,0,2,0,1,0,1,0,2,0,1,0,1,0,4,...].
The g.f.s of the TRISECTIONS begin:
T_0(x) = 1 + 9*x + 29*x^2 + 63*x^3 + 123*x^4 + 219*x^5 + 353*x^6 +...
T_1(x) = 3 + 15*x + 39*x^2 + 81*x^3 + 153*x^4 + 261*x^5 + 411*x^6 +...
T_2(x) = 5 + 21*x + 49*x^2 + 99*x^3 + 183*x^4 + 303*x^5 + 469*x^6 +...
where T_1(x)/T_0(x) = 3*(1+x)/(1+5*x), T_2(x)/T_0(x) = (5+x)/(1+5*x).
PROG
(PARI) {a(n)=polcoeff(exp(sum(m=1, n+1, 3^valuation(2^m+1, 3)*x^m/m)+x*O(x^n)), n)}
for(n=0, 65, print1(a(n), ", "))
(PARI) {a(n)=local(A=1+x); for(i=1, ceil(log(n+1)/log(3)), A=(1-x^2)*(1-x^3)/(1-x)^3*subst(A, x, x^3+x*O(x^n))); polcoeff(A, n)}
CROSSREFS
Sequence in context: A045602 A029470 A323646 * A161388 A229552 A029518
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Apr 18 2012
STATUS
approved