login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The total number of components of size 2 over all simple labeled graphs on n nodes.
3

%I #22 Sep 05 2022 05:25:25

%S 1,3,12,80,960,21504,917504,75497472,12079595520,3779571220480,

%T 2322168557862912,2810246167479189504,6714614842830276788224,

%U 31734302764884015836037120,297105609428491265975789813760,5516815412193254355313652349796352

%N The total number of components of size 2 over all simple labeled graphs on n nodes.

%H Alois P. Heinz, <a href="/A182166/b182166.txt">Table of n, a(n) for n = 2..50</a>

%F E.g.f.: x^2/2 * G(x) where G(x) is e.g.f. for A006125.

%F a(n) = C(n,2) * 2^C(n-2,2). - _Alois P. Heinz_, Apr 16 2012

%p a:= n-> binomial(n, 2) *2^binomial(n-2, 2):

%p seq (a(n), n=2..20); # _Alois P. Heinz_, Apr 16 2012

%t nn = 20; g = Sum[2^Binomial[n, 2] x^n/n!, {n, 0, nn}]; Drop[Range[0, nn]! CoefficientList[Series[x^2/2 g, {x, 0, nn}], x], 2]

%o (Magma) B:=Binomial; [B(n,2)*2^B(n-2,2): n in [2..20]]; // _G. C. Greubel_, Sep 04 2022

%o (SageMath) b=binomial; [b(n,2)*2^b(n-2,2) for n in (2..20)] # _G. C. Greubel_, Sep 04 2022

%Y Cf. A000217, A006125.

%K nonn

%O 2,2

%A _Geoffrey Critzer_, Apr 15 2012