login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle T, read by rows, in which row n lists the distances between n and the two primes whose sum makes 2n in decreasing order (Goldbach conjecture).
6

%I #54 Sep 08 2022 08:45:54

%S 0,0,1,2,0,1,4,0,5,3,4,2,7,3,8,6,0,7,5,1,10,6,0,9,3,8,4,2,13,3,14,12,

%T 6,0,13,11,5,1,12,0,17,9,3,16,10,8,2,19,15,9,20,18,6,0,19,17,13,7,5,

%U 22,18,12,6,21,15,3,20,16,14,10,4,25,15,9,24,18,12,0,23,17,13,11,7,1

%N Irregular triangle T, read by rows, in which row n lists the distances between n and the two primes whose sum makes 2n in decreasing order (Goldbach conjecture).

%C The Goldbach conjecture is that for any even integer 2n>=4, at least one pair of primes p and q exist such that p+q=2n. The present numbers listed here are the distances d between each prime and n, the half of the even integer 2n: d=n-p=q-n with p <= q.

%C See the link section for plots I added. - _Jason Kimberley_, Oct 04 2012

%C Each nonzero entry d of row n is coprime to n. For otherwise n+d would be composite. - _Jason Kimberley_, Oct 10 2012

%H Alois P. Heinz, <a href="/A182138/b182138.txt">Rows n = 2..600, flattened</a>

%H OEIS (Plot 2), <a href="/plot2a?name1=A198292&amp;name2=A182138&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=0&amp;radiop1=xy&amp;drawpoints=true">Plot of (n, d) </a>

%H Subplots for fixed p:

%H OEIS (Plot 2), <a href="/plot2a?name1=A067076&amp;name2=A098090&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=0&amp;radiop1=xy&amp;drawpoints=true">A067076 vs A098090</a> (p=3).

%H OEIS (Plot 2), <a href="/plot2a?name1=A089038&amp;name2=A089253&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=1&amp;radiop1=xy&amp;drawpoints=true">A089038 vs A089253</a> (p=5).

%H OEIS (Plot 2), <a href="/plot2a?name1=A105760&amp;name2=A089192&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=2&amp;radiop1=xy&amp;drawpoints=true">A105760 vs A089192</a> (p=7).

%H ...

%H OEIS (Plot 2), <a href="/plot2a?name1=A153143&amp;name2=A097932&amp;tform1=untransformed&amp;tform2=untransformed&amp;shift=6&amp;radiop1=xy&amp;drawpoints=true">A153143 vs A097932</a> (p=19).

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Goldbach%27s_conjecture">Goldbach's conjecture</a>

%F T(n,i) = n - A184995(n,i). - _Jason Kimberley_, Sep 25 2012

%e n=2, 2n=4, 4=2+2, p=q=2 -> d=0.

%e n=18, 2n=36, four prime pairs have a sum of 36: 5+31, 7+29, 13+23, 17+19, with the four distances d being 13=18-5=31-18, 11=18-7=29-18, 5=18-13=23-18, 1=18-17=19-18.

%e Triangle begins:

%e 0;

%e 0;

%e 1;

%e 2, 0;

%e 1;

%e 4, 0;

%e 5, 3;

%e 4, 2;

%e 7, 3;

%e 8, 6, 0;

%p T:= n-> seq(`if`(isprime(p) and isprime(2*n-p), n-p, NULL), p=2..n):

%p seq(T(n), n=2..40); # _Alois P. Heinz_, Apr 16 2012

%o (PARI) for(n=2,18,forprime(p=2,n,if(isprime(2*n-p),print1(n-p", ")))) \\ _Charles R Greathouse IV_, Apr 16 2012

%o (Magma) A182138:= func<n|[n-p:p in PrimesUpTo(n)|IsPrime(2*n-p)]>;

%o &cat[A182138(n):n in [2..30]]; // _Jason Kimberley_, Oct 01 2012

%Y Cf. A045917 (row lengths), A047949 (first column), A047160 (last elements of rows).

%Y Cf. A184995.

%K easy,nonn,tabf

%O 2,4

%A _Jean COHEN_, Apr 16 2012