login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total area of the bounding boxes of all integer partitions of n.
3

%I #24 Jan 14 2024 15:18:24

%S 0,1,4,10,24,47,93,162,283,462,747,1154,1779,2642,3908,5643,8098,

%T 11398,15975,22030,30253,41027,55379,73983,98455,129838,170578,222447,

%U 289009,373064,479970,613962,782893,993349,1256546,1582466,1987365,2485840,3101146

%N Total area of the bounding boxes of all integer partitions of n.

%H Alois P. Heinz, <a href="/A182094/b182094.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = A188814(n) + n*A000041(n) = A188814(n) + A066186(n).

%e a(4) = 24 = 4+6+4+6+4 because the partitions of 4 are [1,1,1,1], [1,1,2], [2,2], [1,3], [4] and the bounding boxes have areas 4*1, 3*2, 2*2, 2*3, 1*4.

%e a(5) = 47 = 5+8+6+9+6+8+5 because the partitions of 5 are [1,1,1,1,1], [1,1,1,2], [1,2,2], [1,1,3], [2,3], [1,4], [5].

%p b:= proc(n, i) option remember; local f, g;

%p if n=0 or i=1 then [1, n]

%p elif i<1 then [0, 0]

%p else f:= b(n, i-1); g:= `if`(i>n, [0, 0], b(n-i, i));

%p [f[1]+g[1], f[2]+g[2]+g[1]]

%p fi

%p end:

%p a:= n-> add(add(i, i=b(n-j, min(j, n-j)))*j, j=1..n):

%p seq(a(n), n=0..40);

%t b[n_, i_] := b[n, i] = Module[{f, g}, If[n == 0 || i == 1, {1, n}, If[i < 1, {0, 0}, f = b[n, i - 1]; g = If[i > n, {0, 0}, b[n - i, i]]]; {f[[1]] + g[[1]], f[[2]] + g[[2]] + g[[1]]}]]; a[n_] := Sum[Sum[i, {i, b[n - j, Min[j, n - j]]}]*j, {j, 1, n}]; Table[a[n], {n, 0, 40}] (* _Jean-François Alcover_, Feb 05 2017, translated from Maple *)

%Y Cf. A000041, A066186, A115995, A188814.

%K nonn

%O 0,3

%A _Alois P. Heinz_, Apr 11 2012