login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = number of n-lettered words in the alphabet {1, 2} with as many occurrences of the substring (consecutive subword) [1, 1] as of [2, 2].
4

%I #19 May 11 2024 16:34:24

%S 1,2,2,2,4,6,12,20,40,70,140,252,504,924,1848,3432,6864,12870,25740,

%T 48620,97240,184756,369512,705432,1410864,2704156,5408312,10400600,

%U 20801200,40116600,80233200,155117520,310235040,601080390,1202160780,2333606220,4667212440,9075135300,18150270600,35345263800

%N a(n) = number of n-lettered words in the alphabet {1, 2} with as many occurrences of the substring (consecutive subword) [1, 1] as of [2, 2].

%H Shalosh B. Ekhad and Doron Zeilberger, <a href="http://arxiv.org/abs/1112.6207">Automatic Solution of Richard Stanley's Amer. Math. Monthly Problem #11610 and ANY Problem of That Type</a>, arXiv preprint arXiv:1112.6207, 2011. See subpages for rigorous derivations of g.f., recurrence, asymptotics for this sequence. [From _N. J. A. Sloane_, Apr 07 2012]

%F G.f.: 1 + x + x*sqrt((1+2*x)/(1-2*x))= 1 + x + x/G(0), where G(k)= 1 - 2*x/(1 + 2*x/(1 + 1/G(k+1) )); (continued fraction). - _Sergei N. Gladkovskii_, Jul 26 2013

%F E.g.f.: 1 + x - (x*BesselI(1, 2*x)*(2 + Pi*(1 + 2*x)*StruveL(0, 2*x)) - x*(1 + 2*x)*BesselI(0, 2*x)*(2 + Pi*StruveL(1, 2*x)))/2. - _Stefano Spezia_, May 11 2024

%p a:= proc(n) option remember; `if`(n<3, [1,2$3][n+1],

%p (2*a(n-1)+4*(n-3)*a(n-2))/(n-1))

%p end:

%p seq(a(n), n=0..39); # _Alois P. Heinz_, May 11 2024

%Y Apart from initial terms, same as A063886.

%K nonn

%O 0,2

%A _N. J. A. Sloane_, Apr 07 2012