OFFSET
1,1
COMMENTS
This sequence approximates the sequence of solutions to the Birthday Problem, A033810. The two sequences agree for almost all n, i.e., on a set of integers n with density 1.
LINKS
Gheorghe Coserea, Table of n, a(n) for n = 1..10000
D. Brink, A (probably) exact solution to the Birthday Problem, Ramanujan Journal, 2012, pp 223-238.
MAPLE
seq(ceil((2*n*log(2))^(1/2) + (3-2*log(2))/6), n=1..1000); # Robert Israel, Aug 23 2015
MATHEMATICA
Table[Ceiling[Sqrt[2 n Log[2] + (3 - 2 Log[2])/6]], {n, 82}] (* Michael De Vlieger, Aug 24 2015 *)
PROG
(PARI)
a(n) = { ceil((2*n*log(2))^(1/2) + (3-2*log(2))/6) };
apply(n->a(n), vector(84, i, i)) \\ Gheorghe Coserea, Aug 23 2015
CROSSREFS
KEYWORD
nonn
AUTHOR
David Brink, Apr 06 2012
STATUS
approved