Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Aug 12 2019 18:09:21
%S 1,1,5,1513,60376809,613498040952501,2655748106132754540814283,
%T 7350748555338515554166266981278924209,
%U 18155845241010181420704703186769135339279915667193169,53121946985233865823079732996510797894348260342024814486694637630897821
%N n-alternating permutations of length n^2.
%C These are the generalized Euler numbers A181985(n, n) and also the André numbers A181937(n, n^2).
%H Alois P. Heinz, <a href="/A181992/b181992.txt">Table of n, a(n) for n = 0..26</a>
%H Peter Luschny, <a href="http://oeis.org/wiki/User:Peter_Luschny/SeidelTransform">An old operation on sequences: the Seidel transform</a>
%p A181992 := proc(n) local E, dim, i, k; dim := n*n;
%p E := array(0..dim, 0..dim); E[0, 0] := 1;
%p for i from 1 to dim do
%p if i mod n = 0 then E[i, 0] := 0 ;
%p for k from i-1 by -1 to 0 do E[k, i-k] := E[k+1, i-k-1] + E[k, i-k-1] od;
%p else E[0, i] := 0;
%p for k from 1 by 1 to i do E[k, i-k] := E[k-1, i-k+1] + E[k-1, i-k] od;
%p fi od;
%p E[0, dim] end:
%p seq(A181992(i),i=0..9);
%t A181985[n_, len_] := Module[{e, dim = n*(len - 1)}, e[0, 0] = 1; For[i = 1, i <= dim, i++, If[Mod[i, n] == 0, e[i, 0] = 0; For[k = i - 1, k >= 0, k--, e[k, i - k] = e[k + 1, i - k - 1] + e[k, i - k - 1]], e[0, i] = 0; For[k = 1, k <= i, k++, e[k, i - k] = e[k - 1, i - k + 1] + e[k - 1, i - k]]]]; Table[e[0, n*k], {k, 0, len - 1}]]; a[n_] := A181985[n, n + 1][[n + 1]]; Table[a[n], {n, 1, 14}] (* _Jean-François Alcover_, Dec 17 2013, after Maple code in A181985 *)
%Y Cf. A181985, A181937.
%K nonn
%O 0,3
%A _Peter Luschny_, Apr 05 2012
%E a(0)=1 prepended by _Alois P. Heinz_, Aug 12 2019