login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The value of r at the bifurcation point of the first period-7 cycle of the logistic map f(x) = r*x*(1 - x).
11

%I #16 Apr 02 2012 23:06:56

%S 3,7,0,2,1,5,4,9,2,8,1,5,3,5,8,8,7,7,0,2,2,2,6,1,2,3,1,2,4,2,6,4,1,3,

%T 6,5,5,9,1,8,6,0,3,4,2,5,9,4,6,7,0,0,8,1,7,5,7,5,0,4,2,7,8,9,9,3,5,4,

%U 6,2,6,6,2,0,1,5,8,4,7,0,9,4,8,9,6,9,1,3,1,9,8,8,4,4,4,9,7,1,2,6

%N The value of r at the bifurcation point of the first period-7 cycle of the logistic map f(x) = r*x*(1 - x).

%C Root of a degree 63*2 = 126 polynomial.

%e 3.702154928...

%t RealDigits[1 + Sqrt[1 + T] /. NSolve[97862157334118736160267353892330031361 - 24275883989858911295570196314376441888 T + 11949756847721247033090755550100031472 T^2 - 7305759525507048491687489710934851842 T^3 + 4979912078948645588349153608449721856 T^4 - 3626559126667087845228068253830569728 T^5 + 2762422187660818660072532819743957008 T^6 - 1880399068065596812679449750312116489 T^7 + 1211937495049324668386707923551814144 T^8 - 759866924055411176816609501610145824 T^9 + 466557599052858501899389873590498576 T^10 - 280965824140635821336538113950238208 T^11 + 165486490562715543623266844910996960 T^12 - 95328733468347624721143436596991728 T^13 + 53730737569188242850960902675061540 T^14 - 29631735433275573295736684905520448 T^15 + 15982002519220233506297359288643328 T^16 - 8426732734596962888735943308790072 T^17 + 4341578043750972227945942898034432 T^18 - 2184193663643426076323203313845088 T^19 + 1072045107586559381111681621669072 T^20 - 512897616845631175409335289338708 T^21 + 239007878643078614755697662563584 T^22 - 108415793383957757795350567428064 T^23 + 47846270482094728117141329426032 T^24 - 20533661180243125068599265318144 T^25 + 8564906198781819799124804441280 T^26 - 3470264291680473250164651552944 T^27 + 1364870535759255877272510765950 T^28 - 520676891296255096870756895040 T^29 + 192488968788190123648373004064 T^30 - 68893036110679144584159460492 T^31 + 23845858487001866959614915840 T^32 - 7973063091544280406837942464 T^33 + 2572118763623299179804574640 T^34 - 799578831968317708137874814 T^35 + 239196982314145129630174464 T^36 - 68763448836715397230901728 T^37 + 18967378806716848507574128 T^38 - 5011787964028065103857408 T^39 + 1266306625250424841996640 T^40 - 305348843999288091901136 T^41 + 70117811645069434371412 T^42 - 15296768944400171831616 T^43 + 3162019501419003256064 T^44 - 617525327585232743224 T^45 + 113570706028361676288 T^46 - 19599347048769496032 T^47 + 3161153679144274672 T^48 - 474387152691155748 T^49 + 65902567592614400 T^50 - 8426269030832672 T^51 + 984947439372048 T^52 - 104425099694592 T^53 + 9947578647040 T^54 - 841756889488 T^55 + 62385936393 T^56 - 3978343968 T^57 + 213336304 T^58 - 9328642 T^59 + 318464 T^60 - 7936 T^61 + 128 T^62 - T^63 == 0, T, Reals, WorkingPrecision -> 200][[1]][[1]]][[1]]

%Y Cf. A086178, A086179, A086180, A086181, A091517, A118452, A118453, A118746, A181906, A181907, A181909, A181910, A181911, A181912, A181915, A181916, A181917, A181918, A181919.

%K nonn,cons

%O 1,1

%A _Cheng Zhang_, Apr 01 2012