Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #31 Mar 23 2016 09:04:26
%S 1,1,1,1,1,3,1,20,15,35,7,36288,35,277200,1485,4576,9009,20432412000,
%T 5005,1097800704000,459459,5912192,2834325,2322315553259520000,
%U 1616615,124672148625024,4865140665
%N The product of the positive integers <= n that are strongly prime to n.
%C k is strongly prime to n iff k is relatively prime to n and k does not divide n-1.
%C a(n) = A001783(n) / A007955(n-1) if n > 0 and a(0) = 1.
%C For 0 we have the empty product, giving 1. - _Daniel Forgues_, Aug 03 2012
%C From _Robert G. Wilson v_, Aug 04 2012: (Start)
%C Records appear at positions 0, 5, 7, 9, 11, 13, 17, 19, 23, 29, 31, ....
%C Except for 0 and 9, all records appear at prime positions and beginning with the sixth term, are == 0 (mod 100).
%C There are some primes which are not records: 2, 3, 61, 73, 109, 151, 181, 193, 229, 241, 271, 313, 349, 421, 433, 463, ....
%C Anti-records appear at positions 6, 10, 12, 14, 15, 18, 20, 24, 30, 36, 42, 48, 60, 66, 70, 78, 84, 90, 96, ..., and their values are odd. (End)
%H Robert G. Wilson v, <a href="/A181832/b181832.txt">Table of n, a(n) for n = 0..1000</a>
%H Peter Luschny, <a href="http://www.oeis.org/wiki/User:Peter_Luschny/StrongCoprimality">Strong coprimality</a>.
%e a(11) = 3 * 4 * 6 * 7 * 8 * 9 = 36288.
%p with(numtheory):
%p StrongCoprimes := n -> select(k->igcd(k,n)=1,{$1..n}) minus divisors(n-1):
%p A181832 := proc(n) local i; mul(i,i=StrongCoprimes(n)) end:
%p coprimorial := proc(n) local i; mul(i,i=select(k->igcd(k,n)=1,[$1..n])) end:
%p divisorial := proc(n) local i; mul(i,i=divisors(n)) end:
%p A181832a := n -> `if`(n=0,1,coprimorial(n)/divisorial(n-1)):
%t f[n_] := Times @@ Select[ Range@ n, GCD[#, n] == 1 && Mod[n - 1, #] != 0 &]; Array[f, 27, 0] (* _Robert G. Wilson v_, Aug 03 2012 *)
%Y Cf. A181830, A181831, A181833, A181834, A181835, A181836, A001783, A007955.
%K nonn
%O 0,6
%A _Peter Luschny_, Nov 17 2010