login
A181753
Universal sequence of period 56 which contains every 3-subset of {1,2,...,8} exactly once.
2
1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8
OFFSET
1,2
COMMENTS
Each successive block of length 7 is obtained by adding 5 mod 8 to the previous block.
LINKS
G. Hurlbert, On universal cycles for k-subsets of an n-element set, SIAM J. Discrete Math., 7 (1994), 598-604.
A. Leitner and A. Godbole, Universal cycles of classes of restricted words, Discrete Math., 310 (2010) 3303-3309.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1).
FORMULA
From Chai Wah Wu, Jun 13 2020: (Start)
a(n) = a(n-1) - a(n-7) + a(n-8) - a(n-14) + a(n-15) - a(n-21) + a(n-22) - a(n-28) + a(n-29) - a(n-35) + a(n-36) - a(n-42) + a(n-43) - a(n-49) + a(n-50) for n > 50.
G.f.: x*(-8*x^49 + 3*x^48 + 3*x^47 + x^46 - 7*x^45 + 2*x^44 + 2*x^43 - 7*x^42 - 2*x^41 + 6*x^40 + 2*x^39 - 6*x^38 + 4*x^37 - 4*x^36 - 6*x^35 + x^34 + x^33 + 3*x^32 - 5*x^31 + 6*x^30 - 2*x^29 - 5*x^28 - 4*x^27 + 4*x^26 + 4*x^25 - 4*x^24 - 4*x^21 - x^20 - x^19 + 5*x^18 - 3*x^17 + 2*x^16 - 6*x^15 - 3*x^14 + 2*x^13 + 2*x^12 - 2*x^11 - 2*x^10 + 4*x^9 - 4*x^8 - 2*x^7 - 3*x^6 + 5*x^5 - x^4 - x^3 - 2*x^2 - 2*x - 1)/(x^50 - x^49 + x^43 - x^42 + x^36 - x^35 + x^29 - x^28 + x^22 - x^21 + x^15 - x^14 + x^8 - x^7 + x - 1). (End)
EXAMPLE
The period is 1356725 6823472 3578147 8245614 5712361 2467836 7134583 4681258.
PROG
(Haskell)
a181753 n = a181753_list !! (n-1)
a181753_list = concat $ iterate
(map ((+ 1) . flip mod 8 . (+ 4))) [1, 3, 5, 6, 7, 2, 5]
-- Reinhard Zumkeller, Nov 09 2014
CROSSREFS
Cf. A010887.
Sequence in context: A076819 A355848 A181757 * A082218 A111612 A317920
KEYWORD
nonn,easy
AUTHOR
Susanna Cuyler, Nov 14 2010
STATUS
approved