login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A181753
Universal sequence of period 56 which contains every 3-subset of {1,2,...,8} exactly once.
2
1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8, 1, 3, 5, 6, 7, 2, 5, 6, 8, 2, 3, 4, 7, 2, 3, 5, 7, 8, 1, 4, 7, 8, 2, 4, 5, 6, 1, 4, 5, 7, 1, 2, 3, 6, 1, 2, 4, 6, 7, 8, 3, 6, 7, 1, 3, 4, 5, 8, 3, 4, 6, 8, 1, 2, 5, 8
OFFSET
1,2
COMMENTS
Each successive block of length 7 is obtained by adding 5 mod 8 to the previous block.
LINKS
G. Hurlbert, On universal cycles for k-subsets of an n-element set, SIAM J. Discrete Math., 7 (1994), 598-604.
A. Leitner and A. Godbole, Universal cycles of classes of restricted words, Discrete Math., 310 (2010) 3303-3309.
Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1,0,0,0,0,0,-1, 1).
FORMULA
From Chai Wah Wu, Jun 13 2020: (Start)
a(n) = a(n-1) - a(n-7) + a(n-8) - a(n-14) + a(n-15) - a(n-21) + a(n-22) - a(n-28) + a(n-29) - a(n-35) + a(n-36) - a(n-42) + a(n-43) - a(n-49) + a(n-50) for n > 50.
G.f.: x*(-8*x^49 + 3*x^48 + 3*x^47 + x^46 - 7*x^45 + 2*x^44 + 2*x^43 - 7*x^42 - 2*x^41 + 6*x^40 + 2*x^39 - 6*x^38 + 4*x^37 - 4*x^36 - 6*x^35 + x^34 + x^33 + 3*x^32 - 5*x^31 + 6*x^30 - 2*x^29 - 5*x^28 - 4*x^27 + 4*x^26 + 4*x^25 - 4*x^24 - 4*x^21 - x^20 - x^19 + 5*x^18 - 3*x^17 + 2*x^16 - 6*x^15 - 3*x^14 + 2*x^13 + 2*x^12 - 2*x^11 - 2*x^10 + 4*x^9 - 4*x^8 - 2*x^7 - 3*x^6 + 5*x^5 - x^4 - x^3 - 2*x^2 - 2*x - 1)/(x^50 - x^49 + x^43 - x^42 + x^36 - x^35 + x^29 - x^28 + x^22 - x^21 + x^15 - x^14 + x^8 - x^7 + x - 1). (End)
EXAMPLE
The period is 1356725 6823472 3578147 8245614 5712361 2467836 7134583 4681258.
PROG
(Haskell)
a181753 n = a181753_list !! (n-1)
a181753_list = concat $ iterate
(map ((+ 1) . flip mod 8 . (+ 4))) [1, 3, 5, 6, 7, 2, 5]
-- Reinhard Zumkeller, Nov 09 2014
CROSSREFS
Cf. A010887.
Sequence in context: A076819 A355848 A181757 * A082218 A111612 A317920
KEYWORD
nonn,easy
AUTHOR
Susanna Cuyler, Nov 14 2010
STATUS
approved