Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #13 Aug 12 2015 03:28:14
%S 1,1,1,1,1,1,1,1,1,101,1,18,24,101,34,101,42,45,48,51,6,1,14,101,21,
%T 24,27,65,32,101,23,72,1,101,101,101,29,22,24,26,28,22,8,1,12,14,42,8,
%U 6,21,3,49,67,27,1,101,75,32,5,51
%N The smallest number k such that the product k*n contains digit-reverse(n) as a substring.
%C Here, the digit-reverse operation is defined to preserve trailing zeros: for n=10, digit-reverse(n) = 01 which is a substring of 101*10=1010, so a(10)=101. - _R. J. Mathar_, Nov 17 2010
%F a(n) = A181720(n)/n. - _Michel Marcus_, Aug 12 2015
%p A181721 := proc(n) nrev := ListTools[Reverse](convert(n,base,10)) ; for k from 1 do dgskn := convert(k*n,base,10) ; if verify(nrev,dgskn,sublist) then return k; end if; end do: end proc:
%p seq(A181721(n),n=1..80) ; # _R. J. Mathar_, Nov 17 2010
%Y Cf. A181720.
%K nonn,base
%O 1,10
%A _Claudio Meller_, Nov 17 2010