login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Greatest common divisor of n! and n+1.
4

%I #27 Sep 08 2022 08:45:54

%S 1,1,2,1,6,1,8,9,10,1,12,1,14,15,16,1,18,1,20,21,22,1,24,25,26,27,28,

%T 1,30,1,32,33,34,35,36,1,38,39,40,1,42,1,44,45,46,1,48,49,50,51,52,1,

%U 54,55,56,57,58,1,60,1,62,63,64,65,66,1,68,69,70,1,72,1,74,75,76,77,78,1

%N Greatest common divisor of n! and n+1.

%C From Wilson's theorem, it follows that a(n) = 1 when n + 1 is prime, a(n) > 1 otherwise. - _Alonso del Arte_, Feb 25 2014

%H Vincenzo Librandi, <a href="/A181569/b181569.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = A050873(A000142(n), n + 1);

%F a(A006093(n)) = 1;

%F for n > 3: a(n) = (n + 1) / (n*A010051(n+1) + 1).

%F a(n) = (n+1)/A014973(n+1). - _Michel Marcus_, Aug 14 2015

%e a(6) = 1 because 6! and 7 are coprime.

%e a(7) = 8 because 7! = 5040 and gcd(5040, 8) = 8.

%e a(8) = 9 because 8! = 40320 and gcd(40320, 9) = 9.

%p A181569:=n->gcd(n!,n+1): seq(A181569(n), n=1..100); # _Wesley Ivan Hurt_, Aug 13 2015

%t Table[GCD[n!, n + 1], {n, 80}] (* _Alonso del Arte_, Feb 25 2014 *)

%o (Magma) [GCD(Factorial(n), n+1): n in [1..80]]; // _Vincenzo Librandi_, Mar 03 2014

%o (PARI) a(n)= n!/denominator(polcoeff((x+1)*exp(x+x*O(x^n)), n)); \\ _Gerry Martens_, Aug 12 2015

%o (PARI) A181569(n)=gcd(n!,n+1) \\ _M. F. Hasler_, Aug 16 2015

%Y Cf. A000142, A006093, A010051, A050873.

%Y Cf. A088140, A135683.

%K nonn,easy

%O 1,3

%A _Reinhard Zumkeller_, Oct 31 2010