login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of torsion pairs in the cluster category of type A_n.
2

%I #21 May 09 2023 18:26:42

%S 1,4,17,82,422,2274,12665,72326,421214,2492112,14937210,90508256,

%T 553492552,3411758334,21175624713,132226234854,830077057878,

%U 5235817447752,33166634502334,210904780742860,1345806528336772,8614979593487972,55307373497626442,356012579697723084

%N Number of torsion pairs in the cluster category of type A_n.

%C a(n) is also the number of Ptolemy diagrams on n vertices with distinguished base edge.

%C a(n) is the sum over all polygon dissections in a polygon with distinguished base edge, where each region of size at least four has weight two.

%H Andrew Howroyd, <a href="/A181517/b181517.txt">Table of n, a(n) for n = 3..500</a>

%H Thorsten Holm, Peter Jorgensen, Martin Rubey, <a href="http://arxiv.org/abs/1010.1184">Ptolemy diagrams and torsion pairs in the cluster category of Dynkin type A_n</a>, arXiv:1010.1184v1 [math.RT], 2010

%F G.f.: y*P(y) - y^2 where P(y) satisfies P(y) = y + P(y)^2*(1+P(y))/(1-P(y)).

%e For n=4 there are 4 Ptolemy diagrams: the square with no diagonal, two diagrams with one diagonal, and the square with both diagonals .

%o (PARI) a(n) = n-=3; sum(i=0, floor((n+1)/2), 2^i*binomial(n+1+i,i)*binomial(2*n+2,n+1-2*i))/(n+2); \\ _Michel Marcus_, Jan 14 2012; corrected Jun 13 2022

%o (PARI) seq(n) = Vec(x*(serreverse(x - x^2*(1 + x)/(1 - x) + O(x^(n+2))) - x)) \\ _Andrew Howroyd_, May 09 2023

%Y Cf. A181519.

%K easy,nonn

%O 3,2

%A _Martin Rubey_, Oct 26 2010