login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that 59 is the largest prime factor of k^2-1.
4

%I #21 Dec 20 2024 17:40:54

%S 58,117,119,176,235,237,296,353,471,530,532,589,591,650,766,827,945,

%T 1002,1061,1063,1179,1297,1299,1535,1592,1594,1651,1769,1828,1887,

%U 1889,2066,2184,2241,2243,2300,2302,2479,2536,2774,2951,3126,3244,3305,3421

%N Numbers k such that 59 is the largest prime factor of k^2-1.

%C Numbers k such that A076605(k) = 59.

%C Sequence is finite, for proof see A175607.

%C Search for terms can be restricted to the range from 2 to A175607(17) = 41257182408961; primepi(59) = 17.

%H Artur Jasinski, <a href="/A181462/b181462.txt">Table of n, a(n) for n = 1..634</a>

%t jj = 2^36*3^23*5^15*7^13*11^10*13^9*17^8*19^8*23^8*29^7*31^7*37^7*41^6 *43^6*47^6*53^6*59^6*61^6*67^6*71^5*73^5*79^5*83^5*89^5*97^5; rr = {}; n = 2; While[n < 3222617400, If[GCD[jj, n^2 - 1] == n^2 - 1, k = FactorInteger[n^2 - 1]; kk = Last[k][[1]]; If[kk == 59, AppendTo[rr, n]]]; n++ ]; rr (* _Artur Jasinski_ *)

%t Select[Range[10000],Max[Transpose[FactorInteger[#^2-1]][[1]]]==59&] (* _Harvey P. Dale_, Nov 13 2010 *)

%o (PARI) for(k=2,1e9,vecmax(factor(k^2-1)[,1])==59 & print1(k",")) \\ _M. F. Hasler_, Nov 13 2010

%o (Magma) [ n: n in [2..300000] | m eq 59 where m is D[#D] where D is PrimeDivisors(n^2-1) ]; // _Klaus Brockhaus_, Feb 19 2011

%o (Magma) p:=(97*89*83*79*73*71)^5 *(67*61*59*53*47*43*41)^6 *(37*31*29)^7 *(23*19*17)^8 *13^9 *11^10 *7^13 *5^15 *3^23 *2^36; [ n: n in [2..50000000] | p mod (n^2-1) eq 0 and (D[#D] eq 59 where D is PrimeDivisors(n^2-1)) ]; // _Klaus Brockhaus_, Feb 20 2011

%Y Cf. A076605, A175607, A181447-A181461, A181463-A181470, A181568.

%K fini,full,nonn,changed

%O 1,1

%A _Artur Jasinski_, Oct 21 2010