login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Total number of positive integers below 10^n requiring 8 positive cubes in their representation as sum of cubes.
10

%I #33 May 24 2024 16:28:00

%S 0,3,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,

%T 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,15,

%U 15,15,15,15,15,15,15,15,15,15,15,15,15,15,15

%N Total number of positive integers below 10^n requiring 8 positive cubes in their representation as sum of cubes.

%C Also continued fraction expansion of (9+sqrt(229))/74. - _Bruno Berselli_, Sep 09 2011

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/WaringsProblem.html">Waring's Problem</a>

%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).

%F A061439(n) + A181375(n) + A181377(n) + A181379(n) + A181381(n) + A181400(n) + A181402(n) + a(n) + A130130(n) = A002283(n).

%F a(n) = 15 for n > 2. - _Charles R Greathouse IV_, Sep 09 2011

%F G.f.: 3*x^2*(1+4*x)/(1-x). - _Bruno Berselli_, Sep 09 2011

%F E.g.f.: 3*(5*(exp(x) - 1 - x) - 2*x^2). - _Stefano Spezia_, May 21 2024

%t PadRight[{0, 3}, 100, 15] (* _Paolo Xausa_, May 24 2024 *)

%o (PARI) a(n)=if(n>2,15,3*n-3) \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A018889, A010854.

%Y Cf. A002283, A061439, A130130, A181375, A181377, A181379, A181381, A181400, A181402.

%K nonn,easy

%O 1,2

%A _Martin Renner_, Jan 28 2011

%E a(5)-a(7) from _Lars Blomberg_, May 04 2011