login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Tetrahedron of terms C(r,n,m) representing the number of ways of choosing m disjoint subsets of r members from an original set of n members.
1

%I #36 Feb 20 2016 21:43:17

%S 1,1,1,1,1,2,1,1,1,1,3,3,1,1,1,1,1,1,4,6,4,1,1,3,1,1,1,1,5,10,10,5,1,

%T 1,6,3,1,1,1,1,1,1,6,15,20,15,6,1,1,10,15,1,4,1,1,1,1,1,7,21,35,35,21,

%U 7,1,1,15,45,15,1,10,1,1,1,1,1,1,1,8,28,56,70,56,28,8,1,1,21,105,105,1,20

%N Tetrahedron of terms C(r,n,m) representing the number of ways of choosing m disjoint subsets of r members from an original set of n members.

%C The start index for r is 1 but the start index for m and n is 0. For each value of r, the triangle T_r(n,m) has row n containing 1 + floor(n/r) terms.

%C From _Frank M Jackson_, Nov 20 2010: (Start)

%C C(r,mr,m) = C(r,mr-1,m-1).

%C C(1,m,m) = A000012, C(2,2m,m) = A001147,

%C C(3,3m,m), ..., C(10,10m,m) = A025035, ..., A025042.

%C C(2,26,10) = 150738274937250 and represents the number of possible plugboard settings for a WWII German Enigma Enciphering Machine.

%C C(r,2r,2) = A001700, C(r,3r,3) = A060542, C(r,4r,4) = A082368.

%C C(r,n,m) = C(r,mr-1,m-1)*binomial(n,rm),

%C and applied recursively gives the identity

%C C(r,n,m) = Binomial(n,r*m) * Product_{p=1..m} Binomial(r*(m-p+1)-1,r-1).

%C (End)

%C C(2,26,10) = A266365(10), where 26 is the size of the alphabet. - _Jonathan Sondow_, Dec 29 2015

%H T. Copeland, <a href="http://tcjpn.wordpress.com/2012/11/29/infinigens-the-pascal-pyramid-and-the-witt-and-virasoro-algebras/">Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras</a>

%H Tony Sale, <a href="http://www.codesandciphers.org.uk/enigma/steckercount.htm">Possible Plugboard Settings for a WWII German Enigma Enciphering Machine</a>

%F C(r,n,m) = n!/((n-r*m)!*m!*(r!)^m).

%e r=1, C(1,n,m) is

%e 1

%e 1, 1

%e 1, 2, 1

%e 1, 3, 3, 1

%e 1, 4, 6, 4, 1

%e 1, 5, 10, 10, 5, 1

%e r=2, C(2,n,m) is

%e 1

%e 1

%e 1, 1

%e 1, 3

%e 1, 6, 3

%e 1, 10, 15

%e r=3, C(3,n,m) is

%e 1

%e 1

%e 1

%e 1, 1

%e 1, 4

%e 1, 10

%t Flatten[Table[{n!/((n-r*m)!*m!*r!^m)}, {r, 1, 50}, {n, 0, 50}, {m, 0, Floor[n/r]}]]

%Y C(1,n,m) = T_1(n,m) = A007318, C(2,n,m) = T_2(n,m) = A100861, and C(2,26,m) = A266365.

%K nonn,tabf

%O 1,6

%A _Frank M Jackson_, Oct 16 2010