OFFSET
0,4
COMMENTS
LINKS
G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
FORMULA
G.f.: G(t,x) = (1-x)^2/(1-3*x+x^2-t*x(1-x)).
The g.f. of column k is x^k*(1-x)^(k+2)/(1-3*x+x^2)^(k+1) (we have a Riordan array).
T(n,k) = 3*T(n-1,k) +T(n-1,k-1) -T(n-2,k) -T(n-2,k-1), with T(0,0)=T(1,0)=T(1,1)=T(2,2)=1, T(2,0)=T(2,1)=3, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013
EXAMPLE
T(2,1)=3 because we have (0/2), (1,0/0,1), and (0,1/1,0) (the 2-compositions are written as (top row / bottom row)).
Triangle starts:
1;
1,1;
3,3,1;
8,10,5,1;
21,32,21,7,1;
55,99,80,36,9,1;
MAPLE
G := (1-z)^2/(1-3*z+z^2-t*z*(1-z)): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Emeric Deutsch, Oct 13 2010
STATUS
approved