login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction expansion of the Fibonacci binary number.
4

%I #23 Aug 09 2024 15:11:29

%S 1,2,2,3,2,28,1,13,1,2,1,123,1,6,1,2039,2,2,6,262111,1,35,1,1,3,

%T 536870655,1,2,1,15,1,3,3,1,1,1,2,140737488347135,1,1,1,1,1,127,1,7,7,

%U 1,5,2,2,75557863725914321321983,1,1,2,5,1,2047,2,2,5,1,31,6,1,1,3,2,2

%N Continued fraction expansion of the Fibonacci binary number.

%C Essentially the same as A125600. - _R. J. Mathar_, Oct 14 2010

%H Charles R Greathouse IV, <a href="/A181313/b181313.txt">Table of n, a(n) for n = 0..638</a>

%H D. Bailey, J. Borwein, R. Crandall, and C. Pomerance, <a href="https://doi.org/10.5802/jtnb.457">On the binary expansions of algebraic numbers</a>, Journal de Théorie des Nombres de Bordeaux 16 (2004), 487-518.

%H J. H. Loxton and A. van der Poorten, <a href="http://dx.doi.org/10.1017/S0004972700022978">Arithmetic properties of certain functions in several variables III</a>, Bulletin of the Australian Mathematical Society, Volume 16, Issue 01, February 1977, pp 15-47.

%H J. Shallit and A. van der Poorten, <a href="http://dx.doi.org/10.4153/CJM-1993-058-5">A specialised continued fraction</a>, Can. J. Math. 45 (1993), 1067-79.

%H Alf van der Poorten, <a href="http://www.maths.mq.edu.au/~alf/_Thrall.pdf">In thrall to Fibonacci</a>

%o (PARI) contfrac(suminf(n=1,2.^-fibonacci(n)))

%Y Cf. A084119 (decimal expansion), A125600 (essentially the same), A006518.

%K cofr,nonn

%O 0,2

%A _Charles R Greathouse IV_, Oct 12 2010

%E Offset changed by _Andrew Howroyd_, Aug 09 2024