OFFSET
0,4
COMMENTS
Column sums of:
1 4 9 16 25 36 49...
1 4 9 16...
1...
....................
--------------------
1 4 9 17 29 45 66...
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..5000
Mircea Merca, Inequalities and Identities Involving Sums of Integer Functions J. Integer Sequences, Vol. 14 (2011), Article 11.9.1.
Index entries for linear recurrences with constant coefficients, signature (3,-3,2,-3,3,-1).
FORMULA
a(n) = Sum_{k=0..n} floor(k^2/3).
a(n) = round((2*n^3 + 3*n^2 - 3*n)/18).
a(n) = round((2*n^3 + 3*n^2 - 3*n - 2)/18).
a(n) = floor((2*n^3 + 3*n^2 - 3*n)/18).
a(n) = ceiling((2*n^3 + 3*n^2 - 3*n - 4)/18).
a(n) = a(n-3) + (n-1)^2, n > 2.
G.f.: x^2*(1+x)/((1-x)^3*(1-x^3)).
G.f.: x^2*(1+x)/((1+x+x^2)*(1-x)^4). - L. Edson Jeffery, Jan 16 2014
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6), n >= 6. - L. Edson Jeffery, Jan 16 2014
E.g.f.: exp(-x/2)*(3*exp(3*x/2)*(-2 + x*(2 + x*(9 + 2*x))) + 6*cos(sqrt(3)*x/2) + 2*sqrt(3)*sin(sqrt(3)*x/2))/54. - Stefano Spezia, Oct 24 2022
EXAMPLE
a(5) = 17 = 0 + 0 + 1 + 3 + 5 + 8.
MAPLE
a(n):=round((2*n^(3)+3*n^(2)-3*n)/(18))
MATHEMATICA
Accumulate[Floor[Range[0, 80]^2/3]] (* Harvey P. Dale, Jun 14 2015 *)
PROG
(Magma) [Round((2*n^(3)+3*n^(2)-3*n)/(18)): n in [0..50]]; // Vincenzo Librandi, Jun 21 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Oct 12 2010
STATUS
approved