login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 3 X n binary matrices M with rows in strictly increasing order and rows of M*Mtranspose (mod 2) in strictly increasing order.
1

%I #10 Mar 27 2018 09:36:26

%S 0,0,6,87,730,6236,49400,398032,3162528,25293504,201794944,1613449472,

%T 12895556096,103137221632,824854591488,6598199365632,52780897705984,

%U 422233760645120,3377782040133632,27021990036570112,216174305392852992

%N Number of 3 X n binary matrices M with rows in strictly increasing order and rows of M*Mtranspose (mod 2) in strictly increasing order.

%C Row 3 of A181266.

%H R. H. Hardin, <a href="/A181271/b181271.txt">Table of n, a(n) for n=1..146</a>

%F Empirical (for n>=3): 3*2^(3*n-7) + (18*n - 99 + 13*(-1)^n)*4^(n-4)/3 - (6*n - 1 + 3*(-1)^n)*2^(n-5)/3. - _Vaclav Kotesovec_, Nov 27 2012

%F Conjectures from _Colin Barker_, Mar 27 2018: (Start)

%F G.f.: x^3*(6 + 3*x - 272*x^2 + 444*x^3 + 832*x^4 - 960*x^5 - 512*x^6) / ((1 - 2*x)^2*(1 + 2*x)*(1 - 4*x)^2*(1 + 4*x)*(1 - 8*x)).

%F a(n) = 14*a(n-1) - 36*a(n-2) - 216*a(n-3) + 1056*a(n-4) - 384*a(n-5) - 3584*a(n-6) + 4096*a(n-7) for n>9.

%F (End)

%e M and M*Mtranspose (mod 2) for 3 X 3:

%e ..0..1..1......0..0..1

%e ..1..0..0......0..1..1

%e ..1..0..1......1..1..0

%Y Cf. A181266.

%K nonn

%O 1,3

%A _R. H. Hardin_, Oct 10 2010