Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:45:54
%S 8,64,400,2500,16100,103684,665252,4268356,27399292,175880644,
%T 1128941012,7246435876,46513697660,298563888100,1916431442740,
%U 12301251494596,78959676072668,506828955431044,3253250254953428,20882069005614436
%N Number of n X 3 binary matrices with no three 1's adjacent in a line diagonally or antidiagonally.
%C Column 3 of A181217.
%H R. H. Hardin, <a href="/A181214/b181214.txt">Table of n, a(n) for n = 1..300</a>
%H Robert Israel, <a href="/A181214/a181214.pdf">Maple-assisted proof of formula</a>
%H <a href="/index/Rec#order_09">Index entries for linear recurrences with constant coefficients</a>, signature (6,0,16, 21,-78,-32,0,-12,8).
%F Empirical: a(n) = 6*a(n-1) + 16*a(n-3) + 21*a(n-4) - 78*a(n-5) - 32*a(n-6) - 12*a(n-8) + 8*a(n-9).
%F Empirical g.f.: 4*x*(2 + 4*x + 4*x^2 - 7*x^3 - 23*x^4 - 9*x^5 - x^6 - 2*x^7 + 2*x^8) / ((1 - 6*x - 3*x^2 + 2*x^3)*(1 + 3*x^2 - 12*x^4 - 4*x^6)). - _Colin Barker_, Feb 22 2018
%F Empirical formula confirmed by _Robert Israel_, Apr 30 2018: see link.
%e Some avoided solutions for 4 X 3:
%e 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0
%e 0 0 1 0 0 1 1 0 1 0 0 1 1 0 1 1 0 0 0 0 1
%e 0 1 0 1 1 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0
%e 1 0 0 1 0 0 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1
%p f:= gfun:-rectoproc({a(n) = 6*a(n-1) + 16*a(n-3) + 21*a(n-4) - 78*a(n-5) - 32*a(n-6) - 12*a(n-8) + 8*a(n-9),seq(a(i)=[8, 64, 400, 2500, 16100, 103684, 665252, 4268356, 27399292][i],i=1..9)},a(n),remember):
%p map(f, [$1..20]); # _Robert Israel_, Apr 30 2018
%t LinearRecurrence[{6, 0, 16, 21, -78, -32, 0, -12, 8}, {8, 64, 400, 2500, 16100, 103684, 665252, 4268356, 27399292}, 20] (* _Vincenzo Librandi_, May 01 2018 *)
%o (Magma) I:=[8,64,400,2500,16100,103684,665252,4268356,27399292]; [n le 9 select I[n] else 6*Self(n-1)+16*Self(n-3)+21*Self(n-4)-78*Self(n-5) -32*Self(n-6)-12*Self(n-8)+8*Self(n-9): n in [1..25]]; // _Vincenzo Librandi_, May 01 2018
%Y Cf. A181217.
%K nonn
%O 1,1
%A _R. H. Hardin_, Oct 10 2010