login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k) = number of n X k matrices containing a permutation of 1..n*k in increasing order rowwise, columnwise, diagonally and (downwards) antidiagonally.
10

%I #32 Jul 23 2021 06:55:31

%S 1,1,1,1,1,1,1,2,1,1,1,5,4,1,1,1,14,29,8,1,1,1,42,290,169,16,1,1,1,

%T 132,3532,6392,985,32,1,1,1,429,49100,352184,141696,5741,64,1,1,1,

%U 1430,750325,25097600,36372976,3142704,33461,128,1,1,1,4862,12310294

%N T(n,k) = number of n X k matrices containing a permutation of 1..n*k in increasing order rowwise, columnwise, diagonally and (downwards) antidiagonally.

%C Table starts:

%C .1.1...1......1..........1..............1...................1

%C .1.1...2......5.........14.............42.................132

%C .1.1...4.....29........290...........3532...............49100

%C .1.1...8....169.......6392.........352184............25097600

%C .1.1..16....985.....141696.......36372976.........14083834704

%C .1.1..32...5741....3142704.....3777546912.......8092149471168

%C .1.1..64..33461...69705920...392658046912....4673805856338368

%C .1.1.128.195025.1546100352.40820345224064.2702482348019033600

%H R. H. Hardin and Alois P. Heinz, <a href="/A181196/b181196.txt">Antidiagonals n = 1..30, flattened</a>

%H Brian T. Chan, <a href="https://arxiv.org/abs/1803.05594">Periodic P-Partitions</a>, arXiv:1803.05594 [math.CO], 2018-2020.

%H Ping Sun, <a href="https://doi.org/10.37236/6466">Enumeration of standard Young tableaux of shifted strips with constant width</a>, El. J. Comb., 24 (2017), #P2.41; arXiv:<a href="https://arxiv.org/abs/1506.07256">1506.07256</a> [math.CO], 2015.

%H Antonio Vera López, Luis Martínez, Antonio Vera Pérez, Beatriz Vera Pérez and Olga Basova, <a href="https://doi.org/10.1016/j.laa.2017.05.027">Combinatorics related to Higman's conjecture I: Parallelogramic digraphs and dispositions</a>, Linear Algebra and its Applications, Volume 530, 1 October 2017, p. 414-444. See Table 1.

%F Empirical column 1: a(n) = a(n-1).

%F Empirical column 2: a(n) = a(n-1).

%F Empirical column 3: a(n) = 2*a(n-1).

%F Empirical column 4: a(n) = 6*a(n-1)-a(n-2).

%F Empirical column 5: a(n) = 24*a(n-1)-40*a(n-2)-8*a(n-3).

%F Empirical column 6: a(n) = 120*a(n-1)-1672*a(n-2)+544*a(n-3)-6672*a(n-4) +256*a(n-5).

%F Empirical column 7: a(n) = 720*a(n-1) -84448*a(n-2) +1503360*a(n-3) -17912224*a(n-4) -318223104*a(n-5) +564996096*a(n-6) +270471168*a(n-7) -11373824*a(n-8) +65536*a(n-9).

%e All solutions for 3 X 4:

%e ..1..2..3..4....1..2..3..4....1..2..3..4....1..2..3..4....1..2..3..4

%e ..5..6..7..8....5..6..7..9....5..6..7.10....5..6..8..9....5..6..8.10

%e ..9.10.11.12....8.10.11.12....8..9.11.12....7.10.11.12....7..9.11.12

%e ...

%e ..1..2..3..6....1..2..3..6....1..2..3..6....1..2..3..6....1..2..3..6

%e ..4..5..7..8....4..5..7..9....4..5..7.10....4..5..8..9....4..5..8.10

%e ..9.10.11.12....8.10.11.12....8..9.11.12....7.10.11.12....7..9.11.12

%e ...

%e ..1..2..4..6....1..2..4..6....1..2..4..6....1..2..4..6....1..2..4..6

%e ..3..5..7..8....3..5..7..9....3..5..7.10....3..5..8..9....3..5..8.10

%e ..9.10.11.12....8.10.11.12....8..9.11.12....7.10.11.12....7..9.11.12

%e ...

%e ..1..2..3..5....1..2..3..5....1..2..3..5....1..2..3..5....1..2..3..5

%e ..4..6..7..8....4..6..7..9....4..6..7.10....4..6..8..9....4..6..8.10

%e ..9.10.11.12....8.10.11.12....8..9.11.12....7.10.11.12....7..9.11.12

%e ...

%e ..1..2..4..5....1..2..4..5....1..2..4..5....1..2..4..5....1..2..4..5

%e ..3..6..7..8....3..6..7..9....3..6..7.10....3..6..8..9....3..6..8.10

%e ..9.10.11.12....8.10.11.12....8..9.11.12....7.10.11.12....7..9.11.12

%e ...

%e ..1..2..3..7....1..2..3..7....1..2..4..7....1..2..4..7

%e ..4..5..8..9....4..5..8.10....3..5..8..9....3..5..8.10

%e ..6.10.11.12....6..9.11.12....6.10.11.12....6..9.11.12

%p b:= proc(l) option remember; local n; n:= nops(l);

%p `if`({l[]}={0}, 1, add(`if`((i=1 or l[i-1]<=l[i]) and l[i]>

%p `if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l)), 0), i=1..n))

%p end:

%p T:= (n,k)-> b([n$k]):

%p seq(seq(T(n, 1+d-n), n=1..d), d=1..12); # _Alois P. Heinz_, Jul 24 2012

%t b[l_List] := b[l] = With[{n = Length[l]}, If[Union[l] == {0}, 1, Sum[If[(i == 1 || l[[i-1]] <= l[[i]]) && l[[i]] > If[i == n, 0, l[[i+1]]], b[ReplacePart[l, i -> l[[i]]-1]], 0], {i, 1, n}]]]; T[n_, k_] := b[Array[n&, k]]; Table[Table[T[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* _Jean-François Alcover_, Mar 06 2015, after _Alois P. Heinz_ *)

%Y Rows n=1-5 give: A000012, A000108, A181197, A181198, A181199.

%Y Columns 1+2, 3-8 give: A000012, A011782, A001653, A181192, A181193, A181194, A181195.

%Y A227578 is a similar but different array.

%K nonn,tabl

%O 1,8

%A _R. H. Hardin_, Oct 10 2010