%I #8 Feb 27 2018 05:00:53
%S 1,14,290,6392,141696,3142704,69705920,1546100352,34293030016,
%T 760631058944,16871055411200,374205743270912,8300010573582336,
%U 184097055591849984,4083335265314938880,90569764059295875072
%N Number of n X 5 matrices containing a permutation of 1..n*5 in increasing order rowwise, columnwise, diagonally and (downwards) antidiagonally.
%C Column 5 of A181196.
%H R. H. Hardin, <a href="/A181192/b181192.txt">Table of n, a(n) for n=1..100</a>
%F Empirical: a(n) = 24*a(n-1) - 40*a(n-2) - 8*a(n-3).
%F Conjectures from _Colin Barker_, Feb 27 2018: (Start)
%F G.f.: x*(1 - 10*x - 6*x^2) / ((1 - 2*x)*(1 - 22*x - 4*x^2)).
%F a(n) = 2^(n-2) + ((11-5*sqrt(5))^n*(2+sqrt(5)) + (-2+sqrt(5))*(11+5*sqrt(5))^n) / (4*sqrt(5)).
%F (End)
%e Some solutions for 4 X 5:
%e ..1..2..3..4..5....1..2..3..4..5....1..2..3..4..5....1..2..3..4..5
%e ..6..7..8..9.10....6..7..8..9.10....6..7..8..9.10....6..7..8..9.10
%e .11.12.13.14.15...11.12.13.14.17...11.12.13.14.16...11.12.13.14.18
%e .16.17.18.19.20...15.16.18.19.20...15.17.18.19.20...15.16.17.19.20
%Y Cf. A181196.
%K nonn
%O 1,2
%A _R. H. Hardin_, Oct 10 2010