login
A181191
Number of n X n matrices containing a permutation of 1..n*n in increasing order rowwise, columnwise, diagonally and (downwards) antidiagonally.
2
1, 1, 4, 169, 141696, 3777546912, 4673805856338368, 368253691037579094795185, 2426023001499238992505630883146240, 1697356437632520242875237327471631991584394752, 156101219875805260212264222801658705937606174957553142873088
OFFSET
1,3
LINKS
EXAMPLE
All solutions for 3 X 3:
..1..2..3....1..2..3....1..2..4....1..2..4
..4..5..6....4..5..7....3..5..6....3..5..7
..7..8..9....6..8..9....7..8..9....6..8..9
MAPLE
b:= proc(l) option remember; local n; n:= nops(l);
`if`({l[]}={0}, 1, add(`if`((i=1 or l[i-1]<=l[i]) and l[i]>
`if`(i=n, 0, l[i+1]), b(subsop(i=l[i]-1, l)), 0), i=1..n))
end:
a:= n-> b([n$n]):
seq(a(n), n=1..10); # Alois P. Heinz, Jul 24 2012
MATHEMATICA
b[l_] := b[l] = With[{n = Length[l]},
If[Union[l]=={0}, 1, Sum[If[(i==1 || l[[i-1]] <= l[[i]]) && l[[i]] >
If[i==n, 0, l[[i+1]]], b[ReplacePart[l, i->l[[i]]-1]], 0], {i, 1, n}]]];
a[n_] := b[Table[n, {n}]];
Table[a[n], {n, 1, 11}] (* Jean-François Alcover, May 10 2022, after Alois P. Heinz *)
CROSSREFS
Main diagonal of A181196.
Sequence in context: A283566 A221083 A355883 * A306402 A057140 A245323
KEYWORD
nonn
AUTHOR
R. H. Hardin, Oct 10 2010
EXTENSIONS
a(10)-a(16) from Alois P. Heinz, Jul 24 2012
STATUS
approved