Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #20 Sep 08 2022 08:45:54
%S 0,4,6,4,6,7,6,1,8,2,8,7,1,4,1,4,5,8,8,3,9,1,3,3,5,6,4,4,6,7,4,8,5,0,
%T 4,6,6,6,0,4,4,2,2,6,1,1,0,8,3,2,6,1,2,4,9,1,9,4,9,5,1,1,5,3,1,9,9,5,
%U 0,7,5,8,6,9,9,1,2,7,0,1,0,0,1,4,3,8,4,4,8,4,6,1,9,5,1,6,6,6,6,9,1,4
%N Decimal expansion of 1/zeta(2) - 1/e^gamma, where gamma is the Euler-Mascheroni constant and zeta(2) = Pi^2/6.
%C Zeta(2) is A013661 and e^gamma is A073004.
%C Number theory use in Cellarosi et al., p. 9. Abstract: "We present a limit theorem describing the behavior of a probabilistic model for squarefree numbers. The limiting distribution has a density that comes from the Dickman-De Bruijn function and is constant on the interval [0,1]. We also provide estimates for the error term in the limit theorem."
%H G. C. Greubel, <a href="/A181110/b181110.txt">Table of n, a(n) for n = 0..10000</a>
%H Francesco Cellarosi, Yakov G. Sinai, <a href="http://arxiv.org/abs/1010.0035">Non-Standard Limit Theorems in Number Theory</a>, arXiv:1010.0035 [math.PR], 2010.
%F Equals A059956 - A080130.
%e 0.046467618287141458839133564467485...
%t Join[{0}, RealDigits[1/Zeta[2] - Exp[-EulerGamma], 10, 100][[1]]] (* _G. C. Greubel_, Sep 06 2018 *)
%o (PARI) 1/zeta(2) - exp(-Euler) \\ _Charles R Greathouse IV_, Mar 10 2016
%o (Magma) SetDefaultRealField(RealField(100)); R:= RealField(); 6/Pi(R)^2 - Exp(-EulerGamma(R)); // _G. C. Greubel_, Sep 06 2018
%Y Cf. A001620, A013661.
%K cons,nonn
%O 0,2
%A _Jonathan Vos Post_, Oct 03 2010
%E Offset and leading zeros normalized by _R. J. Mathar_, Oct 05 2010