login
A181104
Dirichlet inverse of Ramanujan's L-series (A000594).
1
1, 24, -252, 2048, -4830, -6048, 16744, 0, 177147, -115920, -534612, -516096, 577738, 401856, 1217160, 0, 6905934, 4251528, -10661420, -9891840, -4219488, -12830688, -18643272, 0, 48828125, 13865712, 0, 34291712, -128406630, 29211840
OFFSET
1,2
COMMENTS
Although it is conjectured that A000594(n) is never 0 here a(n)=0 for infinitely many n. Namely a(n)=0 iff n is not cubefree (n is in A046099).
Multiplicative because A000594 is. - Andrew Howroyd, Aug 05 2018
REFERENCES
B. Cloitre, On the order of absolute convergence of Dirichlet series and the Grand Riemann hypothesis, in preparation 2010-2011 (unpublished as of August 2018).
LINKS
FORMULA
For Re(s)>13/2 we have sum_{n>0}a(n)/n^s*sum_{n>0}A000594(n)/n^s=1. If n is squarefree then a(n)=(-1)^omega(n)*A000594(n).
MATHEMATICA
a[1] = 1; a[n_] := a[n] = -Sum[a[d]*RamanujanTau[n/d], {d, Most[Divisors[n]]}]; Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Jun 18 2013 *)
PROG
(PARI) a(n)=if(n<2, 1/A000594(1), -1/A000594(1)*sumdiv(n, d, if(n-d, a(d)*A000594(n/d), 0)))
(PARI) seq(n)={dirdiv(vector(n, n, n==1), vector(n, n, ramanujantau(n)))} \\ Andrew Howroyd, Aug 05 2018
CROSSREFS
KEYWORD
sign,mult
AUTHOR
Benoit Cloitre, Oct 03 2010
STATUS
approved