login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) is the least prime greater than a(n-1) such that abs(a(n-2) + a(n-1) - a(n)) is prime; a(1)=2, a(2)=3.
4

%I #17 Sep 08 2022 08:45:54

%S 2,3,7,13,17,19,23,29,41,47,59,83,89,101,107,137,173,179,239,251,257,

%T 269,293,311,347,389,419,449,467,557,563,599,641,647,701,761,809,827,

%U 839,857,887,947,953,971,977,1019,1049,1091,1109,1151,1163,1217,1229

%N a(n) is the least prime greater than a(n-1) such that abs(a(n-2) + a(n-1) - a(n)) is prime; a(1)=2, a(2)=3.

%C Partial products are in A181737.

%H Nathaniel Johnston, <a href="/A181103/b181103.txt">Table of n, a(n) for n = 1..10000</a>

%p A181103 := proc(n) option remember: local p: if(n<=2)then return n+1: fi: p:=procname(n-1): do p:=nextprime(p): if(isprime(abs(p-procname(n-2)-procname(n-1))))then return p: fi: od: end: seq(A181103(n),n=1..53); # _Nathaniel Johnston_, May 27 2011

%t nxt[{a_,b_}]:=Module[{lp=NextPrime[b]},While[!PrimeQ[Abs[a+b-lp]],lp= NextPrime[ lp]];{b,lp}]; Transpose[NestList[nxt,{2,3},60]][[1]] (* _Harvey P. Dale_, Feb 08 2015 *)

%o (Magma) A181103:=function(n); S:=[2, 3]; if n le 2 then return S[n]; end if; p:=5; for k in [3..n] do while not IsPrime(Abs(S[k-2]+S[k-1]-p)) do p:=NextPrime(p); end while; Append(~S, p); if k eq n then return p; end if; p:=NextPrime(p); end for; end function; [ A181103(n): n in [1..55] ]; // _Klaus Brockhaus_, Dec 19 2010

%Y Cf. A181737.

%K nonn,easy

%O 1,1

%A _Giovanni Teofilatto_, Oct 03 2010

%E Definition refined and sequence extended by _R. J. Mathar_, Oct 12 2010

%E Index in definition corrected by _R. J. Mathar_, Oct 26 2010