login
A181091
a(n) = Carmichael(F(n)), where F(n) are the Fibonacci numbers.
1
1, 1, 1, 2, 4, 2, 12, 6, 16, 20, 88, 12, 232, 84, 60, 138, 1596, 144, 1008, 40, 420, 792, 28656, 264, 3000, 15080, 5616, 840, 514228, 60, 335824, 152214, 19800, 135660, 141960, 7632, 13320, 785232, 135720, 2160, 1009256, 420, 433494436, 94248
OFFSET
1,4
COMMENTS
The Carmichael function is defined as the smallest integer m such that k^m == 1 (mod n) for all k relatively prime to n.
LINKS
FORMULA
a(n) = A002997(A000045(n)). - Jonathan Vos Post, Oct 02 2010
EXAMPLE
a(5) = 4 is in the sequence because Fibonacci(5) = 5, k^4 == 1 (mod 5) for k = 1,2,3,4;
a(7) = 12 is in the sequence because Fibonacci(7) = 13, k^12 == 1 (mod 7) for k = 1,2,3,4,5,6.
MATHEMATICA
Table[Plus@@(Transpose[CarmichaelLambda[Fibonacci[n]]][[1]]), {n, 50}]
PROG
(Magma) [1, 1] cat [CarmichaelLambda(Fibonacci(n)) : n in [3..60]]; // Vincenzo Librandi, Aug 15 2016
CROSSREFS
Cf. A000045. - Jonathan Vos Post, Oct 02 2010
Sequence in context: A118921 A121799 A078034 * A161795 A138770 A006018
KEYWORD
nonn
AUTHOR
Michel Lagneau, Oct 02 2010
STATUS
approved