login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=number of nXk binary matrices with floor((n*k)/2) 1's and rows and columns in lexicographically strictly increasing order
2

%I #3 Mar 31 2012 12:35:49

%S 1,1,1,0,1,0,0,1,1,0,0,1,5,1,0,0,0,8,8,0,0,0,0,9,50,9,0,0,0,0,6,181,

%T 181,6,0,0,0,0,3,438,1823,438,3,0,0,0,0,1,775,11700,11700,775,1,0,0,0,

%U 0,0,1039,58090,189359,58090,1039,0,0,0,0,0,0,1084,218120,2218249,2218249

%N T(n,k)=number of nXk binary matrices with floor((n*k)/2) 1's and rows and columns in lexicographically strictly increasing order

%C Table starts

%C .1.1.0....0.......0..........0............0..............0.................0

%C .1.1.1....1.......0..........0............0..............0.................0

%C .0.1.5....8.......9..........6............3..............1.................0

%C .0.1.8...50.....181........438..........775...........1039..............1084

%C .0.0.9..181....1823......11700........58090.........218120............707425

%C .0.0.6..438...11700.....189359......2218249.......20523612.........157471741

%C .0.0.3..775...58090....2218249.....61746973.....1247701323.......22218184979

%C .0.0.1.1039..218120...20523612...1247701323....57086318681.....2123810796163

%C .0.0.0.1084..707425..157471741..22218184979..2123810796163...174484293356777

%C .0.0.0..887.1835737.1032413434.315303186865.67142312629555.11201887329999615

%H R. H. Hardin, <a href="/A180977/b180977.txt">Table of n, a(n) for n=1..220</a>

%e All solutions for 3X4

%e ..0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..1....0..0..1..1

%e ..0..0..1..1....0..1..1..0....0..1..1..1....0..1..0..1....0..1..0..1

%e ..0..1..1..1....1..0..1..1....1..0..1..0....0..1..1..0....1..0..1..0

%e ...

%e ..0..0..1..1....0..0..1..1....0..0..1..1

%e ..0..1..0..1....0..1..0..0....0..1..0..1

%e ..1..0..0..1....1..1..0..1....1..1..0..0

%K nonn,tabl

%O 1,13

%A _R. H. Hardin_ Sep 30 2010