login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers k such that the sum of the cubes of the k consecutive integers starting from k is a square.
3

%I #40 Jan 19 2024 11:22:37

%S 1,33,2017,124993,7747521,480221281,29765971873,1845010034817,

%T 114360856186753,7088528073543841,439374379703531361,

%U 27234123013545400513,1688076252460111300417,104633493529513355225313,6485588522577367912668961,402001854906267297230250241

%N Numbers k such that the sum of the cubes of the k consecutive integers starting from k is a square.

%C Numbers k such that A240137(k) is a square.

%C A240137(k) is a square iff (3n-1)*(5n-3) is a square. 15*n^2-14*n+3 = k^2 can be solved as a Pell equation resulting in formula below confirming linear recurrence from Colin Barker. - _Ray Chandler_, Jan 12 2024

%H Colin Barker, <a href="/A180920/b180920.txt">Table of n, a(n) for n = 1..558</a>

%H Vladimir Pletser, <a href="http://arxiv.org/abs/1501.06098">General solutions of sums of consecutive cubed integers equal to squared integers</a>, arXiv:1501.06098 [math.NT], 2015.

%H R. J. Stroeker, <a href="http://www.numdam.org/item?id=CM_1995__97_1-2_295_0">On the sum of consecutive cubes being a perfect square</a>, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (63,-63,1).

%F a(n) = 31*a(n-1) - 14 + 8*sqrt((3*a(n-1) - 1)*(5*a(n-1) - 3)).

%F From _Colin Barker_, Feb 18 2015: (Start)

%F a(n) = 63*a(n-1) - 63*a(n-2) + a(n-3).

%F G.f.: -x*(x^2-30*x+1) / ((x-1)*(x^2-62*x+1)). (End)

%F a(n) = (14+2*(4*(31-8*Sqrt(15))^n+Sqrt(15)*(31-8*Sqrt(15))^n+4*(31+8*Sqrt(15))^n-Sqrt(15)*(31+8*Sqrt(15))^n))/30. - _Ray Chandler_, Jan 12 2024

%t a[1] = 1; a[n_] := a[n] = 31 a[n - 1] - 14 + 8 Sqrt[(3 a[n - 1] - 1)*(5 a[n - 1] - 3)]; Array[a, 14] (* _Robert G. Wilson v_, Sep 27 2010 *)

%o (PARI)

%o default(realprecision, 1000)

%o vector(20, n, if(n==1, t=1, t=round(31*t-14+8*((3*t-1)*(5*t-3))^(1/2)))) \\ _Colin Barker_, Feb 19 2015

%Y Cf. A180921, A240137.

%K nonn,easy

%O 1,2

%A _Vladimir Pletser_, Sep 24 2010

%E a(8) onwards from _Robert G. Wilson v_, Sep 27 2010

%E Name clarified by _Jon E. Schoenfield_, Mar 11 2022