login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (81^n - 2^n)/79.
6

%I #22 Sep 08 2022 08:45:54

%S 0,1,83,6727,544895,44136511,3575057423,289579651327,23455951757615,

%T 1899932092367071,153894499481733263,12465454458020395327,

%U 1009701811099652023535,81785846699071813910431,6624653582624816926753103

%N a(n) = (81^n - 2^n)/79.

%C The a(n+1) appear in several triangle sums of Nicomachus's table A036561, i.e., Gi2(4*n), Gi2(4*n+1)/2, Gi2(4*n+2)/4, Gi2(4*n+3)/8 and Gi3(n). See A180662 for information about these giraffe and other chess sums.

%H Nathaniel Johnston, <a href="/A180846/b180846.txt">Table of n, a(n) for n = 0..200</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (83,-162).

%F a(n) = (81^n - 2^n)/79.

%F G.f.: x/((81*x-1)*(2*x-1)).

%t Table[(81^n-2^n)/79,{n,0,15}] (* _Vladimir Joseph Stephan Orlovsky_, Apr 13 2011 *)

%o (Magma) [(81^n-2^n)/79: n in [0..50]]; // _Vincenzo Librandi_, Apr 15 2011

%Y Cf. A016153, A016140, A180844, A180845, A180846, A180847, A016185.

%K easy,nonn

%O 0,3

%A _Johannes W. Meijer_, Sep 21 2010