login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A180816
Number of distinct solutions of sum{i=1..4}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 2..n-2
1
0, 0, 0, 1, 3, 30, 102, 485, 1209, 3622, 7472, 18761, 32668, 68364, 113299, 211048, 315291, 560656, 783765, 1302666, 1793022, 2758386, 3624837, 5631414, 7012350, 10247902, 13024865, 18346867, 22183836, 31716850, 37062779, 51151518, 61104631
OFFSET
1,5
COMMENTS
Column 4 of A180823
LINKS
EXAMPLE
Solutions for sum of products of 4 2..4 pairs = 0 (mod 6) are
(2*2 + 2*2 + 2*2 + 2*3) (2*2 + 2*2 + 2*2 + 3*4) (2*2 + 2*2 + 2*3 + 4*4)
(2*2 + 2*2 + 2*4 + 2*4) (2*2 + 2*2 + 3*4 + 4*4) (2*2 + 2*3 + 2*3 + 2*4)
(2*2 + 2*3 + 2*4 + 3*4) (2*2 + 2*3 + 4*4 + 4*4) (2*2 + 2*4 + 2*4 + 4*4)
(2*2 + 2*4 + 3*3 + 3*3) (2*2 + 2*4 + 3*4 + 3*4) (2*2 + 3*4 + 4*4 + 4*4)
(2*3 + 2*3 + 2*3 + 2*3) (2*3 + 2*3 + 2*3 + 3*4) (2*3 + 2*3 + 2*4 + 4*4)
(2*3 + 2*3 + 3*3 + 3*3) (2*3 + 2*3 + 3*4 + 3*4) (2*3 + 2*4 + 2*4 + 2*4)
(2*3 + 2*4 + 3*4 + 4*4) (2*3 + 3*3 + 3*3 + 3*4) (2*3 + 3*4 + 3*4 + 3*4)
(2*3 + 4*4 + 4*4 + 4*4) (2*4 + 2*4 + 2*4 + 3*4) (2*4 + 2*4 + 4*4 + 4*4)
(2*4 + 3*3 + 3*3 + 4*4) (2*4 + 3*4 + 3*4 + 4*4) (3*3 + 3*3 + 3*3 + 3*3)
(3*3 + 3*3 + 3*4 + 3*4) (3*4 + 3*4 + 3*4 + 3*4) (3*4 + 4*4 + 4*4 + 4*4)
CROSSREFS
Sequence in context: A152767 A195029 A211617 * A308402 A035328 A100259
KEYWORD
nonn
AUTHOR
R. H. Hardin Sep 20 2010
STATUS
approved