login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of distinct solutions of sum{i=1..8}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1
1

%I #4 Mar 31 2012 12:35:46

%S 1,25,435,6302,63988,526152,3362296,18294610,83656074,340334735,

%T 1222011919,4033921144,12105114076,34125015671,89380952993,

%U 223056939011,524533055884,1188931232028,2564070855994,5372508105333,10797948228909

%N Number of distinct solutions of sum{i=1..8}(x(2i-1)*x(2i)) = 0 (mod n), with x() in 0..n-1

%C Column 8 of A180803

%H R. H. Hardin, <a href="/A180800/b180800.txt">Table of n, a(n) for n=1..183</a>

%e Solutions for sum of products of 8 0..1 pairs = 0 (mod 2) are

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*0 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*0 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*0 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*0 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1)

%e (0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1)

%e (0*1 + 0*1 + 0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (0*1 + 0*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)

%e (1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1)

%K nonn

%O 1,2

%A _R. H. Hardin_, suggested by _Max Alekseyev_ in the Sequence Fans Mailing List, Sep 20 2010