login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A180779 Number of distinct solutions of sum{i=1..8}(x(2i-1)*x(2i)) = 0 (mod n), with x() only in 1..n-1 1
0, 1, 15, 327, 4856, 53455, 444003, 2948305, 16112289, 75389116, 307372600, 1122069080, 3701885580, 11258893954, 31699979961, 83910860201, 209004408715, 496246703439, 1121475446118, 2440154664350, 5096346969372, 10323359668079 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Column 8 of A180782

LINKS

R. H. Hardin, Table of n, a(n) for n=1..183

EXAMPLE

Solutions for sum of products of 8 1..2 pairs = 0 (mod 3) are

(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2)

(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 2*2)

(1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2)

(1*1 + 1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 2*2 + 2*2)

(1*1 + 1*1 + 1*1 + 1*1 + 1*2 + 2*2 + 2*2 + 2*2)

(1*1 + 1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2)

(1*1 + 1*1 + 1*1 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2)

(1*1 + 1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2)

(1*1 + 1*1 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)

(1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2)

(1*1 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2)

(1*1 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)

(1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 1*2 + 2*2)

(1*2 + 1*2 + 1*2 + 1*2 + 2*2 + 2*2 + 2*2 + 2*2)

(1*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2 + 2*2)

CROSSREFS

Sequence in context: A094399 A219253 A119296 * A196666 A025751 A027402

Adjacent sequences:  A180776 A180777 A180778 * A180780 A180781 A180782

KEYWORD

nonn

AUTHOR

R. H. Hardin Sep 20 2010

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 18 23:31 EDT 2022. Contains 353826 sequences. (Running on oeis4.)